Description Usage Arguments Value See Also Examples
cfX_InverseGamma(t,alpha,beta) evaluates the characteristic function cf(t) of the Inverse Gamma distribution with the parameters alpha (shape, alpha > 0) and beta (rate, beta > 0), i.e.
cfX_InverseGamma(t, alpha, beta) = (1 - it/beta)^(-alpha)
| 1 | cfX_InverseGamma(t, alpha = 1, beta = 1)
 | 
| t | numerical values (number, vector...) | 
| alpha | shape, alpha > 0, default value alpha = 1 | 
| beta | rate > 0, default value beta = 1 | 
characteristic function cf(t) of the Inverse Gamma distribution
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Inverse-gamma_distribution
Other Continuous Probability distribution: cfS_Arcsine,
cfS_Beta, cfS_Gaussian,
cfS_Rectangular,
cfS_StudentT,
cfS_Trapezoidal,
cfS_Triangular, cfX_Beta,
cfX_ChiSquared,
cfX_Exponential, cfX_Gamma,
cfX_LogNormal, cfX_Normal,
cfX_PearsonV,
cfX_Rectangular,
cfX_Triangular
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## EXAMPLE1 (CF of the InverseGamma distribution with alpha = 2, beta = 2)
alpha <- 2
beta <- 2
t <- seq(-20, 20, length.out = 501)
plotGraf(function(t)
  cfX_InverseGamma(t, alpha, beta), t,
  title = "CF of the InverseGamma distribution with alpha = 2, beta = 2")
## EXAMPLE2 (PDF/CDF of the InverseGamma distribution with alpha = 2, beta = 2)
alpha <- 2
beta <- 2
cf <- function(t)
  cfX_InverseGamma(t, alpha, beta)
x <- seq(0, 15, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf, x, prob, xMin = 0, N = 2 ^ 10)
## EXAMPLE3 (PDF/CDF of the compound Binomial-InverseGamma distribution)
p <- 0.3
n <- 25
alpha <- 2
beta <- 2
cfX <- function(t)
  cfX_InverseGamma(t, alpha, beta)
cf <- function(t)
  cfN_Binomial(t, n, p, cfX)
x <- seq(0, 70, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf, x, prob, isCompound = TRUE, N = 2 ^ 10)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.