View source: R/nntsmanifoldnewtonestimation.R
| nntsmanifoldnewtonestimation | R Documentation | 
Computes the maximum likelihood estimates of the NNTS parameters, using a Newton algorithm on the hypersphere
nntsmanifoldnewtonestimation(data, M=0, iter=1000, initialpoint = FALSE, cinitial)| data | Vector of angles in radians | 
| M | Number of components in the NNTS | 
| iter | Number of iterations | 
| initialpoint | TRUE if an initial point for the optimization algorithm will be used | 
| cinitial | Vector of size M+1. The first element is real and the next M elements are complex (values for $c_0$ and $c_1, ...,c_M$). The sum of the squared moduli of the parameters must be equal to 1/(2*pi) | 
| cestimates  | Matrix of (M+1)x2. The first column is the parameter numbers, and the second column is the c parameter's estimators | 
| loglik | Optimum log-likelihood value | 
| AIC | Value of Akaike's Information Criterion | 
| BIC | Value of Bayesian Information Criterion | 
| gradnormerror | Gradient error after the last iteration | 
Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez
Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models by Using a Newton-like Algorithm on Manifolds, Working Paper, Department of Statistics, ITAM, DE-C10.8
set.seed(200)
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
#Estimation of the NNTSdensity with 2 components for data and 200 iterations
nntsmanifoldnewtonestimation(a,2,iter=200)
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data
nntsmanifoldnewtonestimation(Turtles_radians,3,iter=200)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.