View source: R/nntsmanifoldnewtonestimationinterval0to2pi.R
| nntsmanifoldnewtonestimationinterval0to2pi | R Documentation | 
Parameter estimation for incidence data (number of observed values in certain intervals defined over [0,2*pi))
nntsmanifoldnewtonestimationinterval0to2pi(data, cutpoints, 
subintervals,M = 0, iter=1000, initialpoint = FALSE, cinitial)| data | Frequency of data on each interval | 
| cutpoints | Vector with the limits of intervals. The length of cutpoints has to be one plus the length of the data | 
| subintervals | Number of intervals | 
| M | Number of components in the NNTS | 
| iter | Number of iterations | 
| initialpoint | TRUE if an initial point for the optimization algorithm will be used | 
| cinitial | A vector of size M+1. The first element is real, and the next M elements are complex (values for $c_0$ and $c_1, ...,c_M$).The sum of the squared moduli of the parameters must be equal to 1/(2*pi) | 
| cestimates  | Matrix of M+1 * 2. The first column is the parameter numbers, and the second column is the c parameter's estimators | 
| loglik | Optimum log-likelihood value | 
| AIC | Value of Akaike's Information Criterion | 
| BIC | Value of Bayesian Information Criterion | 
| gradnormerror | Gradient error after last iteration | 
Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez
data<-c(1,2,6,4)
cutpoints<-c(0,pi/2,pi,3*pi/2,2*pi-0.00000001)
nntsmanifoldnewtonestimationinterval0to2pi(data, cutpoints, length(data),1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.