plotBIC: Plot Bayesian Information Criterion as a Function of Number...

Description Usage Arguments Details Value Author(s) References Examples

View source: R/visualize.R

Description

Plot Bayesian information criterion (BIC) as a function of the number of clusters obtained from optimal univariate clustering results returned from Ckmeans.1d.dp. The BIC normalized by sample size (BIC/n) is shown.

Usage

1
2
3
4
5
6
7
8
plotBIC(
  ck, xlab="Number of clusters k",
  ylab = "BIC/n", type="b",
  sub=paste("n =", length(ck$cluster)),
  main=paste("Bayesian information criterion",
             "(normalized by sample size)", sep="\n"),
  ...
)

Arguments

ck

an object of class Ckmeans.1d.dp returned by Ckmeans.1d.dp.

xlab

a character string. The x-axis label for the plot.

ylab

a character string. The x-axis label for the plot.

type

the type of plot to be drawn. See plot.

main

a character string. The title for the plot.

sub

a character string. The subtitle for the plot.

...

arguments passed to plot function in package graphics.

Details

The function visualizes the input data as sticks whose heights are the weights. It uses different colors to indicate optimal k-means clusters. The method to calcualte BIC based on Gaussian mixture models estimated on a univariate clustering is described in \insertCitesong2020wucCkmeans.1d.dp.

Value

An object of class "Ckmeans.1d.dp" defined in Ckmeans.1d.dp.

Author(s)

Joe Song

References

\insertAllCited

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# Example: clustering data generated from a Gaussian mixture
#          model of two components
x <- rnorm(50, mean=-1, sd=0.3)
x <- append(x, rnorm(50, mean=1, sd=0.3) )
res <- Ckmeans.1d.dp(x)
plotBIC(res)

y <- (rnorm(length(x)))^2
res <- Ckmeans.1d.dp(x, y=y)
plotBIC(res)

Example output



Ckmeans.1d.dp documentation built on July 22, 2020, 5:09 p.m.