View source: R/indicesclusters.R
indicesClusters | R Documentation |
Compute the Il index to evaluate the agreement between each block and the global partition (in sensory: agreement between each subject and the global partition)
Compute the Jl index to evaluate if each block has a partition (in sensory: if each subject made a partition of products)
indicesClusters(Data, Blocks, cut, NameBlocks=NULL, center=TRUE, scale=FALSE)
Data |
data frame or matrix. Correspond to all the blocks of variables merged horizontally |
Blocks |
numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data. |
cut |
numerical vector. The partition of the cluster analysis. |
NameBlocks |
string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,...Bm. Default: NULL |
center |
logical. Should the data variables be centered? Default: TRUE. Please set to FALSE for a CATA experiment |
scale |
logical. Should the data variables be scaled? Default: FALSE |
Il: the Il indices
jl: the jl indicess
Llobell, F., Qannari, E.M. (June 10, 2022). Cluster analysis in a multi-bloc setting. SMTDA, Athens, Greece.
Llobell, F., Giacalone, D., Qannari, E. M. (Pangborn 2021). Cluster Analysis of products in CATA experiments.
Paper submitted
clustRowsOnStatisAxes
, , ClusMB
#####projective mapping####
library(ClustBlock)
data(smoo)
res1=ClusMB(smoo, rep(2,24))
summary(res1)
indicesClusters(smoo, rep(2,24), res1$group)
####CATA####
data(fish)
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res2=ClusMB(Data= chang2$Datafinal, Blocks= rep(27, 11), center=FALSE)
indicesClusters(Data= chang2$Datafinal, Blocks= rep(27, 11),cut = res2$group, center=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.