Nothing
#' @name hypergeometrics
#'
#' @md
#'
#' @title hypergeometric functions.
#'
#' @aliases hypergeometric0F1 hypergeometric1F1 hypergeometric2F1
#'
#' @description
#' The hypergeometric functions are a series of functions which includes
#' the hypergeometric0F1, called the confluent hypergeometric limit function (D. Cousineau);
#' the hypergeometric1F1, called the confluent hypergeometric function \insertCite{m14}{CohensdpLibrary};
#' and the hypergeometric2F1, called Gauss' confluent hypergeometric function \insertCite{MICHEL2008535}{CohensdpLibrary}.
#' These functions are involved in the computation of the K' and Lambda'
#' distributions, as well as the Chi-square" and the t" distributions
#' \insertCite{c22a}{CohensdpLibrary}.
#'
#' @usage
#' hypergeometric0F1(a, z)
#' hypergeometric1F1(a, b, z)
#' hypergeometric2F1(a, b, c, z)
#'
#' @param a the first parameter;
#' @param b the second parameter;
#' @param c the third parameter;
#' @param z the argument raised to the powers 0 ... infinity ;
#'
#' @return The result of the hypergeometric function.
#'
#' @references
#' \insertAllCited{}
#'
#'
#' @examples
#'
#' hypergeometric0F1(12, 0.4) # 1.033851
#' hypergeometric1F1(12, 14, 0.4) # 1.409877
#' hypergeometric2F1(12, 14, 16, 0.4) # 205.5699
#'
#' @export
hypergeometric0F1 <- function( a, z ) {
res <- .Fortran("subhyg0f1",
as.double(a),
as.double(z),
as.double(0.00) )
return( res[[3]] )
}
#' @export
hypergeometric1F1 <- function( a, b, z ) {
res <- .Fortran("subhyg1f1",
as.double(a),
as.double(b),
as.double(z),
as.double(0.00) )
return( res[[4]] )
}
#' @export
hypergeometric2F1 <- function( a, b, c, z ) {
res <- .Fortran("subhyg2f1",
as.double(a),
as.double(b),
as.double(c),
as.double(z),
as.double(0.00) )
return( res[[5]] )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.