Nothing
## ----include = FALSE----------------------------------------------------------
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true")
knitr::opts_chunk$set(
collapse = TRUE,
eval = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
echo = FALSE,
eval = NOT_CRAN
)
## ----include = FALSE----------------------------------------------------------
# library(CDMConnector)
# if (Sys.getenv("EUNOMIA_DATA_FOLDER") == ""){
# Sys.setenv("EUNOMIA_DATA_FOLDER" = file.path(tempdir(), "eunomia"))}
# if (!dir.exists(Sys.getenv("EUNOMIA_DATA_FOLDER"))){ dir.create(Sys.getenv("EUNOMIA_DATA_FOLDER"))
# downloadEunomiaData()
# }
## -----------------------------------------------------------------------------
# # Packages
# library(visOmopResults)
# library(omopgenerics)
# library(ggplot2)
# library(CohortCharacteristics)
# library(stringr)
# library(dplyr)
# library(tidyr)
# library(gt)
# library(scales)
# library(CohortConstructor)
# library(gt)
#
# niceOverlapLabels <- function(labels) {
# new_labels <- gsub("_", " ", gsub(" and.*|cc_", "", labels))
# return(
# tibble("Cohort name" = new_labels) |>
# mutate(
# "Cohort name" = str_to_sentence(gsub("_", " ", gsub("cc_|atlas_", "", new_labels))),
# "Cohort name" = case_when(
# grepl("Asthma", .data[["Cohort name"]]) ~ "Asthma without COPD",
# grepl("Covid", .data[["Cohort name"]]) ~ gsub("Covid|Covid", "COVID-19", `Cohort name`),
# grepl("eutropenia", .data[["Cohort name"]]) ~ "Acquired neutropenia or unspecified leukopenia",
# grepl("Hosp", .data[["Cohort name"]]) ~ "Inpatient hospitalisation",
# grepl("First", .data[["Cohort name"]]) ~ "First major depression",
# grepl("fluoro", .data[["Cohort name"]]) ~ "New fluoroquinolone users",
# grepl("Beta", .data[["Cohort name"]]) ~ "New users of beta blockers nested in essential hypertension",
# .default = .data[["Cohort name"]]
# ),
# "Cohort name" = if_else(
# grepl("COVID", .data[["Cohort name"]]),
# gsub(" female", ": female", gsub(" male", ": male", .data[["Cohort name"]])),
# .data[["Cohort name"]]
# ),
# "Cohort name" = if_else(
# grepl(" to ", .data[["Cohort name"]]),
# gsub("male ", "male, ", .data[["Cohort name"]]),
# .data[["Cohort name"]]
# )
# )
# )
# }
## ----echo=TRUE----------------------------------------------------------------
# library(CDMConnector)
# library(CodelistGenerator)
# library(PatientProfiles)
# library(CohortConstructor)
# library(dplyr)
#
# con <- DBI::dbConnect(duckdb::duckdb(),
# dbdir = eunomiaDir())
# cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main",
# writePrefix = "my_study_")
## ----echo=TRUE----------------------------------------------------------------
# benchmark_results <- benchmarkCohortConstructor(cdm,
# runCIRCE = FALSE,
# runCohortConstructorDefinition = FALSE,
# runCohortConstructorDomain = TRUE)
# benchmark_results |>
# glimpse()
## -----------------------------------------------------------------------------
# benchmarkData$omop |>
# visOmopResults::formatTable() |>
# tab_style(style = list(cell_fill(color = "#e1e1e1"), cell_text(weight = "bold")),
# locations = cells_column_labels()) |>
# tab_style(style = list(cell_text(weight = "bold")),
# locations = cells_body(columns = 1))
## -----------------------------------------------------------------------------
# benchmarkData$details |>
# visOmopResults::formatTable(groupColumn = "cdm_name") |>
# tab_style(style = list(cell_fill(color = "#e1e1e1"), cell_text(weight = "bold")),
# locations = cells_column_labels()) |>
# tab_style(style = list(cell_text(weight = "bold")),
# locations = cells_body(columns = 1:2))
## ----fig.width=10, fig.height=7-----------------------------------------------
# benchmarkData$comparison |>
# plotCohortOverlap(uniqueCombinations = FALSE, facet = "cdm_name") +
# scale_y_discrete(labels = niceOverlapLabels) +
# theme(
# legend.text = element_text(size = 10),
# strip.text = element_text(size = 14),
# axis.text.x = element_text(size = 12),
# axis.title.x = element_text(size = 14),
# axis.title.y = element_text(size = 14)
# ) +
# # facet_wrap("cdm_name") +
# scale_fill_discrete(labels = c("Both", "CIRCE", "CohortConstructor")) +
# scale_color_discrete(labels = c("Both", "CIRCE", "CohortConstructor"))
## -----------------------------------------------------------------------------
# ## TABLE with same results as the plot below.
#
# # header_prefix <- "[header]Time by database (minutes)\n[header_level]"
# # benchmarkData$time |>
# # distinct() |>
# # filter(!grepl("male|set", msg)) |>
# # mutate(
# # time = niceNum((as.numeric(toc) - as.numeric(tic))/60, 2),
# # Tool = if_else(grepl("cc", msg), "CohortConstructor", "CIRCE"),
# # "Cohort name" = str_to_sentence(gsub("_", " ", gsub("cc_|atlas_", "", msg)))
# # ) |>
# # select(-c("tic", "toc", "msg", "callback_msg")) |>
# # pivot_wider(names_from = "cdm_name", values_from = "time", names_prefix = header_prefix) |>
# # select(c("Cohort name", "Tool", paste0(header_prefix, data$time$cdm_name |> unique()))) |>
# # mutate(
# # "Cohort name" = case_when(
# # grepl("Asthma", .data[["Cohort name"]]) ~ "Asthma without COPD",
# # grepl("Covid", .data[["Cohort name"]]) ~ "COVID-19",
# # grepl("eutropenia", .data[["Cohort name"]]) ~ "Acquired neutropenia or unspecified leukopenia",
# # grepl("Hosp", .data[["Cohort name"]]) ~ "Inpatient hospitalisation",
# # grepl("First", .data[["Cohort name"]]) ~ "First major depression",
# # grepl("fluoro", .data[["Cohort name"]]) ~ "New fluoroquinolone users",
# # grepl("Beta", .data[["Cohort name"]]) ~ "New users of beta blockers nested in essential hypertension",
# # .default = .data[["Cohort name"]]
# # )
# # ) |>
# # arrange(`Cohort name`) |>
# # gtTable(colsToMergeRows = "all_columns") |>
# # tab_style(style = list(cell_fill(color = "#e1e1e1"), cell_text(weight = "bold")),
# # locations = cells_column_labels()) |>
# # tab_style(style = list(cell_text(weight = "bold")),
# # locations = cells_body(columns = 1:2))
## ----fig.width=10, fig.height=7-----------------------------------------------
#
# benchmarkData$time_definition |>
# ggplot(aes(y = `Cohort name`, x = time, colour = Tool, fill = Tool)) +
# geom_col(position = "dodge", width = 0.6) +
# xlab("Time (minutes)") +
# scale_y_discrete(labels = label_wrap(20)) +
# theme(
# legend.title = element_blank(),
# legend.position = "bottom",
# axis.text.x = element_text(size = 12),
# legend.text = element_text(size = 12),
# strip.text = element_text(size = 14),
# axis.text.y = element_text(size = 12),
# axis.title.x = element_text(size = 14),
# axis.title.y = element_text(size = 14)
# ) +
# facet_wrap(vars(cdm_name), nrow = 1, scales = "free_x")
## -----------------------------------------------------------------------------
# header_prefix <- "[header]Time by tool (minutes)\n[header_level]"
# benchmarkData$time_domain |>
# formatTable() |>
# tab_style(style = list(cell_fill(color = "#e1e1e1"), cell_text(weight = "bold")),
# locations = cells_column_labels()) |>
# tab_style(style = list(cell_text(weight = "bold")),
# locations = cells_body(columns = 1))
## -----------------------------------------------------------------------------
# benchmarkData$time_strata |>
# formatTable() |>
# tab_style(style = list(cell_fill(color = "#e1e1e1"), cell_text(weight = "bold")),
# locations = cells_column_labels()) |>
# tab_style(style = list(cell_text(weight = "bold")),
# locations = cells_body(columns = 1))
## ----fig.width=10, fig.height=7-----------------------------------------------
# benchmarkData$sql_indexes |>
# distinct() |>
# group_by(cdm_name, msg) |>
# summarise(time = sum(as.numeric(toc) - as.numeric(tic))/60, .groups = "drop") |>
# mutate(
# Index = if_else(grepl("No index", msg), "Without SQL index", "With SQL index"),
# Domains = str_to_sentence(gsub("No index: |Index: | domains| domain", "", msg)),
# Domains = gsub("procedure ", "procedure, ", Domains)
# ) |>
# ggplot(aes(y = Domains, x = time, colour = Index, fill = Index)) +
# geom_col(position = "dodge", width = 0.6) +
# xlab("Time (minutes)") +
# scale_y_discrete(labels = label_wrap(15)) +
# theme(
# legend.title=element_blank(),
# legend.position = "bottom",
# legend.text = element_text(size = 12),
# strip.text = element_text(size = 14),
# # axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 12),
# axis.text.x = element_text(size = 12),
# axis.text.y = element_text(size = 12),
# axis.title.x = element_text(size = 14),
# axis.title.y = element_text(size = 14)
# ) +
# facet_wrap(vars(cdm_name), scales = "free_x")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.