Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE, warning = FALSE, message = FALSE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(CDMConnector)
library(CohortSurvival)
library(dplyr)
library(cmprsk)
library(survival)
## -----------------------------------------------------------------------------
cdm <- CohortSurvival::mockMGUS2cdm()
## ----fig.width=5--------------------------------------------------------------
input_survival_single <- cdm$mgus_diagnosis %>%
addCohortSurvival(
cdm = cdm,
outcomeCohortTable = "death_cohort",
outcomeCohortId = 1
)
input_survival_single %>%
glimpse()
## -----------------------------------------------------------------------------
cdm$mgus_diagnosis %>%
addCohortSurvival(
cdm = cdm,
outcomeCohortTable = "death_cohort",
outcomeWashout = 180,
followUpDays = 365
) %>%
filter(cohort_start_date > "1993-01-01") %>%
glimpse()
cdm$mgus_diagnosis %>%
addCohortSurvival(
cdm = cdm,
outcomeCohortTable = "death_cohort",
outcomeDateVariable = "cohort_end_date",
censorOnDate = as.Date("1994-01-01")
) %>%
filter(cohort_start_date > "1993-01-01") %>%
glimpse()
## -----------------------------------------------------------------------------
survival::coxph(survival::Surv(time, status) ~ age + sex, data = input_survival_single)
survival::survdiff(survival::Surv(time, status) ~ sex, data = input_survival_single)
## -----------------------------------------------------------------------------
# Add all status and time information for both outcomes
input_survival_cr <- cdm$mgus_diagnosis %>%
addCohortSurvival(cdm, "progression") %>%
dplyr::rename(
"outcome_time" = "time",
"outcome_status" = "status"
) %>%
addCohortSurvival(cdm, "death_cohort") %>%
dplyr::rename(
"competing_outcome_time" = "time",
"competing_outcome_status" = "status"
)
# Collect and
input_survival_cr <- input_survival_cr %>%
dplyr::collect() %>%
dplyr::mutate(
time = pmin(outcome_time, competing_outcome_time),
status = factor(
dplyr::if_else(competing_outcome_time <= outcome_time, 2 * competing_outcome_status, outcome_status))
) %>%
dplyr::select(-c("outcome_time", "outcome_status", "competing_outcome_time", "competing_outcome_status"))
## ----fig.height=6, fig.width=8------------------------------------------------
input_survival_cr <- input_survival_cr %>%
dplyr::mutate(sex = dplyr::if_else(sex == "M", 0, 1))
covs <- data.frame(input_survival_cr$age, input_survival_cr$sex)
names(covs) <- c("age", "sex")
summary(cmprsk::crr(ftime = input_survival_cr$time,
fstatus = input_survival_cr$status,
cov1 = covs,
failcode = 1,
cencode = 0))
## -----------------------------------------------------------------------------
cdmDisconnect(cdm)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.