Description Usage Arguments Value Author(s) References See Also Examples
The simultaneous confidence interval for multinomial proportions based on the method proposed in Quesenberry and Hurst (1964)
| 1 | QH(inpmat, alpha)
 | 
| inpmat | inpmat refers to the cell counts of given contingency table corresponding to a categorical data | 
| alpha | a number between 0 and 1 to get the upper 100(1-??) percentage point of the chi square distribution | 
lower, upper limits of multinomial proportions together with product of length of k intervals as volume of simultaneous confidence intervals
Dr M Subbiah
Quesensberry, C.P. and Hurst, D.C. (1964). Large Sample Simultaneous Confidence Intervals for Multinational Proportions. Technometrics, 6: 191-195.
| 1 2 3 | 
Loading required package: MCMCpack
Loading required package: coda
Loading required package: MASS
##
## Markov Chain Monte Carlo Package (MCMCpack)
## Copyright (C) 2003-2019 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
##
## Support provided by the U.S. National Science Foundation
## (Grants SES-0350646 and SES-0350613)
##
Original Intervals
Lower Limit
[1] 0.08576647 0.11335512 0.08331399 0.05709120 0.14452754 0.17390520
Upper Limit
[1] 0.2143830 0.2534468 0.2107762 0.1703466 0.2949861 0.3322609
Adjusted Intervals
Lower Limit
[1] 0.08576647 0.11335512 0.08331399 0.05709120 0.14452754 0.17390520
Upper Limit
[1] 0.2143830 0.2534468 0.2107762 0.1703466 0.2949861 0.3322609
Volume
[1] 6.2e-06
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.