Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, eval=FALSE--------------------------------------------------------
# library(ComBatFamQC)
# library(dplyr)
# data(adni)
## ----eval=FALSE---------------------------------------------------------------
# features <- colnames(adni)[c(43:104)]
# covariates <- c("timedays", "AGE", "SEX", "DIAGNOSIS")
# interaction <- c("timedays,DIAGNOSIS")
# batch <- "manufac"
# result_orig <- visual_prep(type = "lm", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = NULL, df = adni)
# comfam_shiny(result_orig)
## ----eval=FALSE---------------------------------------------------------------
# result_gam <- visual_prep(type = "gam", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth_int_type = "linear", smooth = "AGE", df = adni)
# comfam_shiny(result_gam)
## ----eval=FALSE---------------------------------------------------------------
# result_lmer <- visual_prep(type = "lmer", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = "subid", df = adni)
# comfam_shiny(result_lmer)
## ----eval=FALSE---------------------------------------------------------------
# #library(quarto)
# temp_dir <- tempfile()
# dir.create(temp_dir)
# diag_save(path = temp_dir, result = result_lmer, use_quarto = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# diag_save(path = temp_dir, result = result_lmer, use_quarto = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# features <- colnames(adni)[c(43:104)]
# covariates <- c("timedays", "AGE", "SEX", "DIAGNOSIS")
# interaction <- c("timedays,DIAGNOSIS")
# batch <- "manufac"
# ## Harmonize using evaluation results as the inputs
# combat_model <- combat_harm(result = result_orig, type = "lm", interaction = interaction, smooth = NULL, random = NULL, df = adni)
# ## Harmonize through specifying features, batch, covariates and df arguments
# combat_model_copy <- combat_harm(type = "lm", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = NULL, df = adni)
# ## Expect to get the same harmonization results
# identical(combat_model$harmonized_df, combat_model_copy$harmonized_df)
#
# # save harmonized data
# write.csv(combat_model$harmonized_df, file.path(temp_dir, "harmonized.csv"))
#
# # save combat model
# saveRDS(combat_model$combat.object, file.path(temp_dir, "combat_model.rds"))
# # Clean up the temporary file
# unlink(temp_dir, recursive = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# ## Harmonize using evaluation results as the inputs
# combat_model_lmer <- combat_harm(result = result_lmer, type = "lmer", interaction = interaction, smooth = NULL, random = "subid", df = adni)
# ## Harmonize through specifying features, batch, covariates and df arguments
# combat_model_lmer_copy <- combat_harm(type = "lmer", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = "subid", df = adni)
# ## Expect to get the same harmonization results
# identical(combat_model_lmer$harmonized_df, combat_model_lmer_copy$harmonized_df)
## ----eval=FALSE---------------------------------------------------------------
# ## Harmonize using evaluation results as the inputs
# combat_model_gam <- combat_harm(result = result_gam, type = "gam", interaction = interaction, smooth = "AGE", smooth_int_type = "linear", df = adni)
# ## Harmonize through specifying features, batch, covariates and df arguments
# combat_model_gam_copy <- combat_harm(type = "gam", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = "AGE", smooth_int_type = "linear", df = adni)
# ## Expect to get the same harmonization results
# identical(combat_model_gam$harmonized_df, combat_model_gam_copy$harmonized_df)
## ----eval=FALSE---------------------------------------------------------------
# ## Harmonize using evaluation results as the inputs
# covbat_model <- combat_harm(result = result_gam, type = "gam", interaction = interaction, smooth = "AGE", smooth_int_type = "linear", df = adni, family = "covfam")
# ## Harmonize through specifying features, batch, covariates and df arguments
# covbat_model_copy <- combat_harm(type = "gam", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth_int_type = "linear", smooth = "AGE", df = adni, family = "covfam")
# ## Expect to get the same harmonization results
# identical(covbat_model$harmonized_df, covbat_model_copy$harmonized_df)
## ----eval=FALSE---------------------------------------------------------------
# saved_model <- combat_model_gam$combat.object
# harm_predict <- combat_harm(df = adni %>% head(1000), predict = TRUE, object = saved_model)
## ----eval=FALSE---------------------------------------------------------------
# # harmonize reference data
# reference_site <- adni %>% group_by(site) %>% summarize(count = n()) %>% arrange(desc(count)) %>% pull(site) %>% head(30)
# reference_df <- adni %>% filter(site %in% reference_site)
# features <- colnames(reference_df)[c(43:104)]
# covariates <- c("timedays", "AGE", "SEX", "DIAGNOSIS")
# interaction <- c("timedays,DIAGNOSIS")
# batch <- "site"
# ref_model <- combat_harm(type = "lmer", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = "subid", df = reference_df)
#
# # harmonize new data to the reference data
# harm_new <- combat_harm(type = "lmer", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = "subid", df = adni, reference = ref_model$harmonized_df)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.