Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, eval = FALSE------------------------------------------------------
# library(ComBatFamQC)
# data(age_df)
## ----eval = FALSE-------------------------------------------------------------
# age_df <- data.frame(age_df)
# features <- colnames(age_df)[c(6:56)]
# age <- "age"
# sex <- "sex"
# icv <- "ICV_baseline"
# age_df[[sex]] <- as.factor(age_df[[sex]])
## ----eval = FALSE-------------------------------------------------------------
# # Create sub_df for different features
# sub_df_list <- lapply(seq_len(length(features)), function(i){
# sub_df <- age_df[,c(features[i], age, sex, icv)] %>% na.omit()
# colnames(sub_df) <- c(features[i], "age", "sex", "icv")
# return(sub_df)
# })
## ----eval = FALSE-------------------------------------------------------------
# # For MAC users
# library(parallel)
# age_list <- mclapply(seq_len(length(features)), function(w){
# age_sub <- age_list_gen (sub_df = sub_df_list[[w]], lq = 0.25, hq = 0.75)
# return(age_sub)
# }, mc.cores = detectCores())
#
# # For Windows users
# age_list <- mclapply(1:length(features), function(w){
# age_sub <- age_list_gen (sub_df = sub_df_list[[w]], lq = 0.25, hq = 0.75)
# return(age_sub)
# }, mc.cores = 1)
#
# names(age_list) <- features
#
# quantile_type <- c(paste0("quantile_", 100*0.25), "median", paste0("quantile_", 100*0.75))
## ----eval=FALSE---------------------------------------------------------------
# # plotly: interactive plot
# ComBatFamQC::age_shiny(age_list, features, quantile_type, use_plotly = TRUE)
# # ggplot: static plot
# ComBatFamQC::age_shiny(age_list, features, quantile_type, use_plotly = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# # Save age trend table
# temp_dir <- tempfile()
# dir.create(temp_dir)
# age_save(path = temp_dir, age_list = age_list)
#
# # Save GAMLSS Model
# gamlss_model <- lapply(seq_len(length(age_list)), function(i){
# g_model <- age_list[[i]]$model
# return(g_model)})
# names(gamlss_model) <- names(age_list)
# saveRDS(gamlss_model, file = file.path(temp_dir, "gamlss_model.rds"))
## ----eval=FALSE---------------------------------------------------------------
# features <- colnames(adni)[c(43:104)]
# covariates <- c("timedays", "AGE", "SEX", "DIAGNOSIS")
# interaction <- c("timedays,DIAGNOSIS")
# batch <- "manufac"
# combat_model <- combat_harm(type = "lm", features = features, batch = batch, covariates = covariates, interaction = interaction, smooth = NULL, random = NULL, df = adni)
# harmonized_df <- combat_model$harmonized_df
## ----eval=FALSE---------------------------------------------------------------
# # generate residuals by removing timedays and DIAGNOSIS effects, while preserving AGE and SEX effects.
# result_residual <- residual_gen(type = "lm", features = features, covariates = covariates, interaction = interaction, smooth = NULL, df = harmonized_df, rm = c("timedays", "DIAGNOSIS"))
#
# # save residual data set
# write.csv(result_residual$residual, file.path(temp_dir, "residual.csv"))
#
# # save regression model
# saveRDS(result_residual$model, file.path(temp_dir, "regression_model.rds"))
## ----eval=FALSE---------------------------------------------------------------
# result_residual <- residual_gen(df = harmonized_df, rm = c("timedays", "DIAGNOSIS"), model = TRUE, model_path = file.path(temp_dir, "regression_model.rds"))
#
# # save residual data set
# write.csv(result_residual$residual, file.path(temp_dir, "residual.csv"))
# # Clean up the temporary file
# unlink(temp_dir, recursive = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.