Nothing
#'@title Auxiliary functions using C
#'
#'@description This function computes the empirical margins, their left-limits, Kendall's tau and Spearman's rho for arbitrary data
#'@param data Matrix (x,y) of size n x 2
#'
#'
#'@return \item{tau}{Kendall's tau}
#'@return \item{rho}{Spearman's rho}
#'@return \item{Fx}{Empirical cdf of x}
#'@return \item{Fxm}{Left-limit of the empirical cdf of x}
#'@return \item{Fy}{Empirical cdf of y}
#'@return \item{Fym}{Left-limit of the empirical cdf of y}
#'
#'@references Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA
#'@references Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances, arXiv 2301.07267.
#'
#'@examples
#'data(simgumbel)
#'out=AuxFunC(simgumbel)
#'
#'
#'@export
AuxFunC =function(data){
dim0=dim(data)
n = dim0[1]
d = dim0[2]
x = data[,1]
y = data[,2]
out0 = .C("estdep",
as.double(x),
as.double(y),
as.integer(n),
tau = double(1),
rho = double(1),
s2 = double(1),
Fx = double(n),
Fxm = double(n),
Fy = double(n),
Fym = double(n),
Ix = integer(n),
Iy = integer(n),
PACKAGE = "CopulaInference"
)
return(out0[-c(1:3)])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.