Description Usage Arguments Details Value References Examples
Specify the priors. Without inputs, defaults will be used.
| 1 | priors.spec(m0 = 0, CS0 = 3, n0 = 0.001, d0 = 0.001)
 | 
| m0 | the value of the prior mean at time  | 
| CS0 | controls the scaling of the prior variance matrix  | 
| n0 | prior hyperparameter of precision  | 
| d0 | prior hyperparameter of precision  | 
At time t=0, (theta_{0} | D_{0}, phi) ~ N(m_{0},C*_{0} x phi^{-1}),
where D_{0} denotes the set of initial information.
priors a list with the prior hyperparameters. Relevant to dlm.lpl,
 exhaustive.search, node, subject.
West, M. & Harrison, J., 1997. Bayesian Forecasting and Dynamic Models. Springer New York.
| 1 2 | pr=priors.spec()
pr=priors.spec(n0=0.002)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.