Description Usage Arguments Value Examples
This function estimates the values of the cumulative distribution function (CDF) for a vector.
1 2 3 4 5 6 7 8 9 10 11 |
x |
Vector containing data. |
bootstrap |
Flag for performing bootstrapping on |
samples |
Sample size for bootstrapping. Defaults to |
density |
Flag for calculating kernel density estimates (KDE) instead
of histogram counts. Depends on the |
binned |
Flag for calculating binned KDE. Defaults to |
grids |
Size parameter for the estimation grid when |
unit_range |
Flag for unity data range (i.e., data is normalized
between 0 and 1). Defaults to |
seed |
Seed for random number generator (for reproducible outcomes).
Defaults to |
... |
Other options relevant for distribution estimation. |
If density = FALSE
, a function of class ecdf
, inheriting from the
stepfun
class, and hence inheriting a knots()
method.
If density = TRUE
, an object of class kcde
which has the fields
eval.points
and estimate
necessary for calculating a map.
1 2 3 | x <- runif(100)
x_hist_cdf <- estimate_cdf(x, samples = 1000, unit_range = TRUE)
x_kde_cdf <- estimate_cdf(x, density = TRUE, unit_range = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.