Nothing
test_that("Test of the impact of the three information criteria", {
skip_on_cran()
### test on microarray data ######################
datafilename <- system.file("extdata", "transcripto_very_small_sample.txt", package="DRomics")
(o <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess"))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.05))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
(fAICcrelaxed <- drcfit(s_quad, information.criterion = "AICc", deltaAICminfromnullmodel = 0, progressbar = TRUE))
table(fAIC$fitres$model)
table(fAICc$fitres$model)
table(fAICcrelaxed$fitres$model)
table(fBIC$fitres$model)
head(fAIC$information.criterion.val)
head(fAICc$information.criterion.val)
head(fBIC$information.criterion.val)
# check of values on the linear model
(npts <- length(o$dose))
k <- 3 # mod lin
# correction to get AICc
fAIC$information.criterion.val$InfoCrit.L + 2*k*(k+1)/(npts -k -1)
fAICc$information.criterion.val$InfoCrit.L
# correction to get BIC
fAIC$information.criterion.val$InfoCrit.L - 2*k + log(npts)*k
fBIC$information.criterion.val$InfoCrit.L
plot(fAIC)
plot(fAICc)
plot(fBIC)
################# on larger data sets
datafilename <- system.file("extdata", "transcripto_sample.txt", package="DRomics")
(o <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess"))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.05))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
table(fAIC$fitres$model)
table(fAICc$fitres$model)
table(fBIC$fitres$model)
### test on metabolo data with 4 doses ######################
data(Scenedesmus_metab)
head(Scenedesmus_metab)
# build of a dataset with
Scenedesmus_metab2 <- Scenedesmus_metab[, c(1:8,10, 12, 14, 15, 18, 19, 22, 23)]
head(Scenedesmus_metab2)
(o <- continuousomicdata(Scenedesmus_metab2))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.05))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
table(fAIC$fitres$model)
table(fAICc$fitres$model)
table(fBIC$fitres$model)
table(fAIC$fitres$nbpar)
table(fAICc$fitres$nbpar)
table(fBIC$fitres$nbpar)
plot(fAIC)
plot(fAICc)
plot(fBIC)
### test on RNAseq data with 5 doses ######################
data(Zhou_kidney_pce)
head(Zhou_kidney_pce)
(o <- RNAseqdata(Zhou_kidney_pce))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.01))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fAICcrelaxed <- drcfit(s_quad, information.criterion = "AICc",
deltaAICminfromnullmodel = 0, progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
table(fAIC$fitres$model)
table(fAICc$fitres$model)
table(fAICcrelaxed$fitres$model)
table(fBIC$fitres$model)
table(fAIC$fitres$nbpar)
table(fAICc$fitres$nbpar)
table(fBIC$fitres$nbpar)
plot(fAIC, 81)
plot(fAICc, 81)
plot(fBIC, 81)
# exploration of simplified biphasic models with f = 0
f <- fAIC
# f <- fBIC
# f <- AICc
(id2explore <- f$fitres$id[f$fitres$model %in% c("Gauss-probit", "log-Gauss-probit") &
f$fitres$f == 0])
f$fitres[f$fitres$id %in% id2explore, ]
plot(f, items = id2explore)
###### test on apical data
data(Scenedesmus_apical)
head(Scenedesmus_apical)
(o <- continuousanchoringdata(Scenedesmus_apical, backgrounddose = 0.1))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.01))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
plot(fAIC)
plot(fAICc)
plot(fBIC)
###### test on in situ RNAseq data
datafilename <- system.file("extdata", "insitu_RNAseq_sample.txt", package="DRomics")
(o <- RNAseqdata(datafilename, backgrounddose = 2e-2, transfo.method = "rlog"))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.01))
(fAIC <- drcfit(s_quad, information.criterion = "AIC", progressbar = TRUE))
(fAICc <- drcfit(s_quad, information.criterion = "AICc", progressbar = TRUE))
(fBIC <- drcfit(s_quad, information.criterion = "BIC", progressbar = TRUE))
table(fAIC$fitres$model)
table(fAICc$fitres$model)
table(fBIC$fitres$model)
table(fAIC$fitres$nbpar)
table(fAICc$fitres$nbpar)
table(fBIC$fitres$nbpar)
plot(fAIC, dose_log_transfo = TRUE)
plot(fAICc, dose_log_transfo = TRUE)
plot(fBIC, dose_log_transfo = TRUE)
nrow(fAIC$fitres)
nrow(fAICc$fitres)
nrow(fBIC$fitres)
id2compare <- fBIC$fitres$id[50:70]
plot(fAIC, items = id2compare, dose_log_transfo = TRUE)
plot(fAICc, items = id2compare, dose_log_transfo = TRUE)
plot(fBIC, items = id2compare, dose_log_transfo = TRUE)
# exploration of simplified biphasic models with f = 0
# f <- fAIC
# f <- fBIC
f <- fAICc
(id2explore <- f$fitres$id[f$fitres$model %in% c("Gauss-probit", "log-Gauss-probit") &
f$fitres$f == 0])
f$fitres[f$fitres$id %in% id2explore, ]
plot(f, items = id2explore, dose_log_transfo = TRUE)
head(fAIC$information.criterion.val, 20)
head(fAICc$information.criterion.val, 20)
head(fBIC$information.criterion.val, 20)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.