Nothing
test_that("Test DRomics on microarray data", {
skip_on_cran()
# importation and check of data and normalization if needed
# options to put in shiny : norm.method (4 methods)
## sample of the transcripto data set
datafilename <- system.file("extdata", "transcripto_very_small_sample.txt", package="DRomics")
(o <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess"))
plot(o)
(o.2 <- microarraydata(datafilename, check = TRUE, norm.method = "none"))
(o.3 <- microarraydata(datafilename, check = TRUE, norm.method = "quantile"))
(o.4 <- microarraydata(datafilename, check = TRUE, norm.method = "scale"))
plot(o.2)
plot(o.3)
plot(o.4)
# item selection using the quadratic method
# options to put in shiny : select.method (3 methods), FDR (numerical positive value < 1)
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.001))
(s_lin <- itemselect(o, select.method = "linear", FDR = 0.001))
(s_ANOVA <- itemselect(o, select.method = "ANOVA", FDR = 0.001))
# fit of dose response models and choice of the best fit for each item
# no options in shiny
(f <- drcfit(s_quad, progressbar = TRUE))
f$fitres
f$unfitres
plot(f)
# Alternative plots
# with a chosen number of first items
plot(f, items = 12)
# with chosen items in a specified order
plot(f, items = c("15", "27.1", "7.1"))
# residual plots
plot(f, items = 12, plot.type = "fitted_residuals")
plot(f, items = 12, plot.type = "dose_residuals")
# plot with dose in log
plot(f, items = 12, plot.type = "dose_fitted", dose_log_transfo = FALSE)
plot(f, items = 12, plot.type = "dose_residuals", dose_log_transfo = FALSE)
plot(f, items = 12, plot.type = "fitted_residuals", dose_log_transfo = FALSE)
# evaluate the impact of preventsfitsoutofrange
datafilename <- system.file("extdata", "transcripto_sample.txt", package="DRomics")
(o1 <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess"))
(s_quad1 <- itemselect(o1, select.method = "quadratic", FDR = 0.001))
(f1 <- drcfit(s_quad1,
preventsfitsoutofrange = FALSE,
enablesfequal0inGP = FALSE,
enablesfequal0inLGP = FALSE,
progressbar = TRUE))
(f1bis <- drcfit(s_quad1,
preventsfitsoutofrange = TRUE,
enablesfequal0inGP = FALSE,
enablesfequal0inLGP = FALSE,
progressbar = TRUE))
(f1ter <- drcfit(s_quad1,
preventsfitsoutofrange = TRUE,
enablesfequal0inGP = TRUE,
enablesfequal0inLGP = TRUE,
progressbar = TRUE))
(idremovedinf1bis <- f1$fitres$id[!is.element(f1$fitres$id, f1bis$fitres$id)])
(idchanged <- f1bis$fitres$id[which(f1bis$fitres$model != f1ter$fitres$model |
f1bis$fitres$f != f1ter$fitres$f)])
# no impact on this dataset
# calculation of benchmark doses
# options in shiny : z (numerical positive value), x (numerical positive value : percentage)
(r <- bmdcalc(f, z = 1, x = 10))
(r.2 <- bmdcalc(f, z = 2, x = 50))
# plot of BMD
# options in shiny : BMDtype (2 possibilities), plottype (3 possibilities), by (3 possibilities)
# hist.bins (integer for hist only)
plot(r, BMDtype = "zSD", plottype = "ecdf", by = "none")
plot(r, BMDtype = "xfold", plottype = "ecdf", by = "none")
plot(r, plottype = "hist", by = "none")
plot(r, plottype = "hist", by = "none", hist.bins = 10)
plot(r, plottype = "density", by = "none")
plot(r, plottype = "hist", by = "trend", hist.bins = 10)
plot(r, plottype = "hist", by = "model", hist.bins = 10)
plot(r, plottype = "hist", by = "typology", hist.bins = 10)
# Calculation of confidence intervals on BMDs by Bootstrap
# niter <- 1000
niter <- 10
b <- bmdboot(r, niter = niter) # niter should be fixed at least at 1000 to get a reasonable precision
plot(b)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.