Nothing
SpearmanError = function(InputDists,OutputDists){
# Calculates the error of a projection with spearman's rank correlation coefficient
#
# INPUT
# InputDists(1:n,1:n) dissimilarities in Input Space between the n data points
# OutputDists(1:n,1:n) dissimilarities in Input Space between the n data points
# OUTPUT
# rho rank correlation coefficient
#
# author: MT 01/2016
# based on Diss
#EXAMPLE:
if(!is.matrix(InputDists)){
warning('InputDists is not a matrix. Calling as.matrix()')
InputDists=as.matrix(InputDists)
}
if(!is.matrix(OutputDists)){
warning('OutputDists is not a matrix. Calling as.matrix()')
OutputDists=as.matrix(OutputDists)
}
if(!mode(InputDists)=='numeric'){
warning('InputDists is not a numeric matrix. Calling mode(InputDists)="numeric"')
mode(InputDists)='numeric'
}
if(!mode(OutputDists)=='numeric'){
warning('OutputDists is not a numeric matrix. Calling mode(OutputDists)="numeric"')
mode(OutputDists)='numeric'
}
VectorOfInputDists=InputDists[lower.tri(InputDists, diag = FALSE)]
VectorOfOutputDists=OutputDists[lower.tri(OutputDists, diag = FALSE)]
bInput = rank(VectorOfInputDists)
bOutput = rank(VectorOfOutputDists)
# Differenzen zwischen den Rangen
diffRang = (bOutput - bInput)^2
n=length(VectorOfInputDists)
#kappa = n*(n-1)/2 #Wenn Distanzmatrix genommen werden wuerde
kappa=n #im Falle der unteren Dreicksmatrix
rho = 1 - ((1/ (kappa^3 - kappa)) * 6 * sum(diffRang))
return(rho = rho)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.