Description Usage Arguments Value Author(s) References See Also Examples
This funciton impletment multiple stage Q-learning.
1 | Qlearning(X,AA,RR,K,pentype="lasso",m=4)
|
X |
is either a matrix shared among all stages; or a list of feature matrices, where feature matrices from different stages can have different dimensions. |
AA |
a list of K, each element |
RR |
a list of K, each element |
K |
number of stages |
pentype |
the type of regression implemented in Q-learning, the default is 'lasso', another choice is 'LSE' |
m |
number of folds of cross validation for in |
it returns a list of K models with class 'qlearn'
.
Ying Liu
Watkins, C. J. C. H. (1989). Learning from delayed rewards (Doctoral dissertation, University of Cambridge).
Murphy, S. A., Oslin, D. W., Rush, A. J., & Zhu, J. (2007). Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology, 32(2), 257-262.
Zhao, Y., Kosorok, M. R., & Zeng, D. (2009). Reinforcement learning design for cancer clinical trials. Statistics in medicine, 28(26), 3294.
1 2 3 4 5 6 7 8 | n_cluster=10
pinfo=10
pnoise=20
example2=make_2classification(n_cluster,pinfo,pnoise,200)
test=make_2classification(n_cluster,pinfo,pnoise,200,example2$centroids)
pi=list()
pi[[2]]=pi[[1]]=rep(1,200)
modelQ=Qlearning(example2$X,example2$A,example2$R,2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.