Qlearning: Q-learning

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/Qlearning.R

Description

This funciton impletment multiple stage Q-learning.

Usage

1
Qlearning(X,AA,RR,K,pentype="lasso",m=4)

Arguments

X

is either a matrix shared among all stages; or a list of feature matrices, where feature matrices from different stages can have different dimensions.

AA

a list of K, each element A[[i]] is the vector of treatment assignments for stage i.

RR

a list of K, each element R[[i]] is the outcome vector for stage i.

K

number of stages

pentype

the type of regression implemented in Q-learning, the default is 'lasso', another choice is 'LSE'

m

number of folds of cross validation for in cv.glmnet in regression model when 'lasso' is selected

Value

it returns a list of K models with class 'qlearn'.

Author(s)

Ying Liu

References

Watkins, C. J. C. H. (1989). Learning from delayed rewards (Doctoral dissertation, University of Cambridge).

Murphy, S. A., Oslin, D. W., Rush, A. J., & Zhu, J. (2007). Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology, 32(2), 257-262.

Zhao, Y., Kosorok, M. R., & Zeng, D. (2009). Reinforcement learning design for cancer clinical trials. Statistics in medicine, 28(26), 3294.

See Also

Qlearning_Single

Examples

1
2
3
4
5
6
7
8
n_cluster=10
pinfo=10
pnoise=20
example2=make_2classification(n_cluster,pinfo,pnoise,200)
test=make_2classification(n_cluster,pinfo,pnoise,200,example2$centroids)
pi=list()
pi[[2]]=pi[[1]]=rep(1,200)
modelQ=Qlearning(example2$X,example2$A,example2$R,2)

DTRlearn documentation built on April 6, 2018, 1:04 a.m.