MLPCA: Multilinear Principal Component Analysis with Missing Data

View source: R/MLPCA.R

MLPCAR Documentation

Multilinear Principal Component Analysis with Missing Data

Description

This function performs Multilinear Principal Component Analysis (MLPCA) to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates the RMSE and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

MLPCA(data0, data.sample, data.copy, mr, km)

Arguments

data0

The original dataset containing the response variable and features.

data.sample

The dataset used for sampling, which may contain missing values.

data.copy

A copy of the original dataset, used for comparison or validation.

mr

Indices of the rows with missing values that need to be predicted.

km

The number of clusters for k-means clustering.

Value

A list containing:

Xnew

The imputed dataset.

RMSE

The Root Mean Squared Error.

CPP1

The K-means clustering Consistency Proportion Index.

CPP2

The Hierarchical Clustering Complete Linkage Consistency Proportion Index.

CPP3

The Hierarchical Clustering Single Linkage Consistency Proportion Index.

CPP4

The Hierarchical Clustering Average Linkage Consistency Proportion Index.

CPP5

The Hierarchical Clustering Centroid linkage Consistency Proportion Index.

CPP6

The Hierarchical Clustering Median Linkage Consistency Proportion Index.

CPP7

The Hierarchical Clustering Ward's Method Consistency Proportion Index.

timeKNN

The MLPCA algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Examples

# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample
data0 <- data.frame(data.sample, response = rnorm(n))
mr <- sample(1:n, 10)  # Sample rows for evaluation
km <- 3  # Number of clusters
# Perform MLPCA imputation
result <- MLPCA(data0, data.sample, data.copy, mr, km)
# Print the results
print(result$RMSE)
print(result$CPP1)
print(result$Xnew)


DTSR documentation built on April 3, 2025, 11:35 p.m.

Related to MLPCA in DTSR...