RPCA: Robust Principal Component Analysis with Missing Data

View source: R/RPCA.R

RPCAR Documentation

Robust Principal Component Analysis with Missing Data

Description

This function performs Robust Principal Component Analysis (RPCA) to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

RPCA(data0, data.sample, data.copy, mr, km)

Arguments

data0

The original dataset containing the response variable and features.

data.sample

The dataset used for sampling, which may contain missing values.

data.copy

A copy of the original dataset, used for comparison or validation.

mr

Indices of the rows with missing values that need to be predicted.

km

The number of clusters for k-means clustering.

Value

A list containing:

Xnew

The imputed dataset.

RMSE

The Root Mean Squared Error.

MMAE

The Mean Absolute Error.

RRE

The Relative Relative Error.

CPP1

The K-means clustering Consistency Proportion Index.

CPP2

The Hierarchical Clustering Complete Linkage Consistency Proportion Index.

CPP3

The Hierarchical Clustering Single Linkage Consistency Proportion Index.

CPP4

The Hierarchical Clustering Average Linkage Consistency Proportion Index.

CPP5

The Hierarchical Clustering Centroid linkage Consistency Proportion Index.

CPP6

The Hierarchical Clustering Median Linkage Consistency Proportion Index.

CPP7

The Hierarchical Clustering Ward's Method Consistency Proportion Index.

timeRPCA

The RPCA algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Examples

# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample
data0 <- data.frame(data.sample, response = rnorm(n))
mr <- sample(1:n, 10)  # Sample rows for evaluation
km <- 3  # Number of clusters
# Perform RPCA imputation
result <- RPCA(data0, data.sample, data.copy, mr, km)
# Print the results
print(result$RMSE)
print(result$MMAE)
print(result$RRE)
print(result$CPP1)
print(result$Xnew)


DTSR documentation built on April 3, 2025, 11:35 p.m.

Related to RPCA in DTSR...