Nothing
#' @title Adaptive Feature Based Dynamic Time Warping algorithm
#' @author Camille Dezecache, Hong T. T. Phan, Emilie Poisson-Caillault
#' @description
#' This function estimates a distance matrix which is used as an input in dtw() function (package dtw) to align two univariate signals following Adaptative Feature Based Dynamic Time Warping algorithm (AFBDTW).
#' @param q query vector
#' @param r reference vector
#' @param w1 weight of local feature VS global feature.
#' By default, w1 = 0.5, and by definition, w2 = 1 - w1.
#' @return A list containing the following elements:
#' \itemize{
#' \item{query: }{the query vector}
#' \item{response: }{the response vector}
#' \item{query_local: }{local feature of the query}
#' \item{response_local: }{local feature of the response vector}
#' \item{query_global: }{global feature of the query}
#' \item{response_global: }{global feature of the response vector}
#' \item{dist_local: }{distance matrix of the local feature}
#' \item{dist_local: }{distance matrix of the global feature}
#' \item{distAFBDTW: }{AFBDTW distance matrix}
#' }
#' @import rlist stats
#' @examples
#' data(dataDTWBI)
#' X <- dataDTWBI[, 1] ; Y <- dataDTWBI[, 2]
#' AFBDTW_Dist <- dist_afbdtw(X, Y)
dist_afbdtw <- function(q, r, w1=0.5){
w2 <- 1-w1
if(w1<=0){stop("Weights should be positive")}
ql <- .local_feature(q)
rl <- .local_feature(r)
qg <- .global_feature(q)
rg <- .global_feature(r)
dist_local <- .dist_matrix(ql, rl)
dist_global <- .dist_matrix(qg, rg)
dist <- w1*dist_local + w2*dist_global
outputAFBDTW <- list("query" = q,
"response" = r,
"query_local" = ql,
"response_local" = rl,
"query_global" = qg,
"response_global" = rg,
"dist_local" = dist_local,
"dist_global" = dist_global,
"distAFBDTW" = dist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.