Extra parameters

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  eval = TRUE,        
  echo = TRUE,         # echo code?
  message = TRUE,     # Show messages
  warning = TRUE,     # Show warnings
  fig.width = 8,       # Default plot width
  fig.height = 6,      # .... height
  dpi = 200,           # Plot resolution
  fig.align = "center"
)
knitr::opts_chunk$set()  # Figure alignment   
library(DataFakeR)
set.seed(123)
options(tibble.width = Inf)

Most of the functionality offered by DataFakeR were described in the remaining vignettes. Goal of this section is to present additional options offered by DataFakeR that can make your data simulating workflow much easier.

Grouped simulation

It is quite common that values of the column are strongly related to the groups defined by the other column values.

Some of the examples may be the age of death that may differ between males and females.

In order to allow simulating values based on groups designed by the other columns, group_by parameter was introduced.

Let's see the below schema structure:

# schema-patient.yml
public:
  tables:
    patient:
      columns:
        treatment_id:
          type: varchar
          formula: !expr paste0(patient_id, line_number)
        patient_id:
          type: char(8)
        line_number: 
          type: smallint
        gender:
          type: char(1)
          values: [F, M]
        biomarker:
          type: numeric
          range: [0, 1]

Let's simulate the data using the below definition:

sch <- schema_source(system.file("extdata", "schema-patient.yml", package = "DataFakeR"))
sch <- schema_simulate(sch)
schema_get_table(sch, "patient")

Now we'd like to extend the definition following the below rules:

  1. For each patient_id we usually want to have more than one row (it allows us to analyze the patient in multiple treatment stages).
  2. For each patient_id, line_number is the sequence starting from 1 to the number of patient rows.
  3. gender should be unique for each patient_id value.
  4. biomarker value should mean = 0.5 for females and mean = 0.6 for males.

Rule no 1

Let's start with condition 1. We may simply achieve this by providing possible patient_id values with unique number less than target number of rows.

# schema-patient_2.yml
public:
  tables:
    patient:
      columns:
        treatment_id:
          type: varchar
          formula: !expr paste0(patient_id, line_number)
        patient_id:
          type: char(8)
          values: [PTNT01ID, PTNT02ID, PTNT03ID]
        line_number: 
          type: smallint
        gender:
          type: char(1)
          values: [F, M]
        biomarker:
          type: numeric
          range: [0, 1]

Let's simulate the data using the below definition:

sch <- schema_update_source(sch, file = system.file("extdata", "schema-patient_2.yml", package = "DataFakeR"))
sch <- schema_simulate(sch)
schema_get_table(sch, "patient")

Rule no 2

Now, we'd like to make sure line_number is a sequence 1:n, where n is the number of rows for each patient.

If we define line_number formula as !expr 1:dplyr::n(), the resulting column would be a sequence 1:n where n is the number of table rows. There is an obvious need to apply grouping by patient_id.

How can we achieve this in DataFakeR?

It is enough to add group_by: patient_id parameter to line_number.

Let's see it in action:

# schema-patient_3.yml
public:
  tables:
    patient:
      columns:
        treatment_id:
          type: varchar
          formula: !expr paste0(patient_id, line_number)
        patient_id:
          type: char(8)
          values: [PTNT01ID, PTNT02ID, PTNT03ID]
        line_number: 
          type: smallint
          group_by: patient_id
          formula: !expr 1:dplyr::n()
        gender:
          type: char(1)
          values: [F, M]
        biomarker:
          type: numeric
          range: [0, 1]

Looking at the dependency graph:

sch <- schema_update_source(sch, file = system.file("extdata", "schema-patient_3.yml", package = "DataFakeR"))
schema_plot_deps(sch, "patient")

we can see, DataFakeR detected dependency between patient_id and line_numer column.

line_number was also created according to our needs:

sch <- schema_simulate(sch)
schema_get_table(sch, "patient")

Rule no 3

Now let's assure gender is unique for each patient.

To achieve this, we'll have to group by patient_id and sample one value from c("F", "M) and repeat this with desired number of rows.

We may again use the formula, but for the sake of the example we'll define custom restricted method.

The method will be executed whenever singular: true parameter is provided to the column.

# schema-patient_4.yml
public:
  tables:
    patient:
      columns:
        treatment_id:
          type: varchar
          formula: !expr paste0(patient_id, line_number)
        patient_id:
          type: char(8)
          values: [PTNT01ID, PTNT02ID, PTNT03ID]
        line_number: 
          type: smallint
          group_by: patient_id
          formula: !expr 1:dplyr::n()
        gender:
          type: char(1)
          values: [F, M]
          singular: true
          group_by: patient_id
        biomarker:
          type: numeric
          range: [0, 1]

The method definition:

singular_vals <- function(n, values, singular, ...) {

  if (!missing(singular) && isTRUE(singular)) {
    val <- sample(values, 1)
    return(rep(val, n))
  }

  return(NULL)
}

and add it to schema options:

my_opts = set_faker_opts(
  opt_simul_restricted_character = opt_simul_restricted_character(
    singular = singular_vals
  )
)

Now we can start simulation:

sch <- schema_update_source(
  sch, 
  file = system.file("extdata", "schema-patient_4.yml", package = "DataFakeR"),
  my_opts
)
sch <- schema_simulate(sch)
schema_get_table(sch, "patient")

Voila!

Rule no 4

We'd like to sample from normal distribution with a specific mean dependent on the gender value.

Again we have a few options here. The simplest one would be to group biomarker by gender and use:

formula: ifelse(gender == "F", rnorm(dplyr::n(), 0.5, 0.01), rnorm(dplyr::n(), 0.6, 0.01))

but we'll do it using a special method instead.

The main issue we might have is how to access the group value from within the method. We shouldn't be worried. DataFakeR automatically passes the value as a group_val parameter.

So let's try it out.

Let's define spec method named dep_sampl:

# schema-patient_5.yml
public:
  tables:
    patient:
      columns:
        treatment_id:
          type: varchar
          formula: !expr paste0(patient_id, line_number)
        patient_id:
          type: char(8)
          values: [PTNT01ID, PTNT02ID, PTNT03ID]
        line_number:
          type: smallint
          group_by: patient_id
          formula: !expr 1:dplyr::n()
        gender:
          type: char(1)
          values: [F, M]
          singular: true
          group_by: patient_id
        biomarker:
          type: numeric
          range: [0, 1]
          spec: dep_sampl
          group_by: gender

Inside function definition let's add print line to see current group_key value:

dep_sampl <- function(n, group_val, range, ...) {
  print(group_val)
  if (group_val == "M") {
    pmax(pmin(rnorm(n, 0.6, 0.01), range[2]), range[1])
  } else {
    pmax(pmin(rnorm(n, 0.5, 0.01), range[2]), range[1])
  }
}

my_opts = set_faker_opts(
  opt_simul_spec_numeric = opt_simul_spec_numeric(
    dep_sampl = dep_sampl
  ),
  # don't forget option from previous case
  opt_simul_restricted_character = opt_simul_restricted_character(
    singular = singular_vals
  )
)

sch <- schema_update_source(
  sch, 
  file = system.file("extdata", "schema-patient_5.yml", package = "DataFakeR"), 
  my_opts
)
sch <- schema_simulate(sch)
schema_get_table(sch, "patient")

This way we achieved assumed goal.

Ratio of NA values

Another extra parameter offered by DataFakeR is na_ratio. Na ratio allows to precise the ratio of how many NA values should the column have.

For each simulation method the final sample is modified by na_rand function, that replaces desired ratio of values with NAs. Default na_ratio value is 0.05 but can be easily overwritten by opt_default_ configuration, or passed directly in column definition.

Note Whenever column have defined not_null: true, na_rand doesn't attach NA values to the sample.

Ratio of column values

The last extra parameter offered by DataFakeR is levels_ratio. Levels ratio allows to precise how many unique values should the column have.

For each simulation method (before the sample is modified by na_rand) the sample is modified by levels_rand function, that takes desired number of sample levels and resamples it using only provided levels. Default levels_ratio is 1 but can be easily overwritten by opt_default_ configuration, or passed directly in column definition.

Note Whenever column have defined unique: true or levels_ratio: 1, levels_rand doesn't modify the sample.

Remaining parameters

There are a few parameters that can be configured to each column and be handled by all the simulation methods.

Such parameters are:

Whenever any of the above parameters is defined as a parameter of column-type simulation method, such value can be used to get more accurate result respecting the configuration.

For example default character simulation method (simul_default_character) takes an advantage of nchar parameter, but special method for simulating names don't (simul_spec_character_name).



Try the DataFakeR package in your browser

Any scripts or data that you put into this service are public.

DataFakeR documentation built on Feb. 16, 2023, 7:38 p.m.