declare_measurement: Declare measurement procedure

declare_measurementR Documentation

Declare measurement procedure

Description

This function adds measured data columns that can be functions of unmeasured data columns.

Usage

declare_measurement(..., handler = measurement_handler, label = NULL)

measurement_handler(data, ...)

Arguments

...

arguments to be captured, and later passed to the handler

handler

a tidy-in, tidy-out function

label

a string describing the step

data

A data.frame.

Details

It is also possible to include measured variables in your declare_model call or to add variables using declare_step. However, putting latent variables in declare_model and variables-as-measured in declare_measurement helps communicate which parts of your research design are in M and which parts are in D.

Value

A function that returns a data.frame.

Examples


# declare_measurement in use
## Two-arm randomized experiment
design <-
  declare_model(
    N = 500,
    X = rep(c(0, 1), each = N / 2),
    U = rnorm(N, sd = 0.25),
    potential_outcomes(Y ~ 0.2 * Z + X + U)
  ) +
  declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
  declare_sampling(S = complete_rs(N = N, n = 200)) +
  declare_assignment(Z = complete_ra(N = N, m = 100)) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
  declare_estimator(Y ~ Z, inquiry = "ATE")

# Reveal potential outcomes according to treatment assignment
design <-
  declare_model(N = 100,
                potential_outcomes(Y ~ rbinom(
                  N, size = 1, prob = 0.1 * Z + 0.5
                ))) +
  declare_assignment(Z = complete_ra(N, m = 50)) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z))

# Generate observed measurement from a latent value
design <- 
  declare_model(N = 100, latent = runif(N)) +
  declare_measurement(observed = rbinom(N, 1, prob = latent))

# Index creation
library(psych)

design <-
  declare_model(
    N = 500,
    X = rep(c(0, 1), each = N / 2),
    Y_1 = 0.2 * X + rnorm(N, sd = 0.25),
    Y_2 = 0.3 * X + 0.5 * rnorm(N, sd = 0.50),
    Y_3 = 0.1 * X + 0.4 * rnorm(N, sd = 0.75)) +
  declare_measurement(
    index = fa(
      r = cbind(Y_1, Y_2, Y_3),
      nfactors = 1,
      rotate = "varimax"
    )$scores
  )

draw_data(design)





DeclareDesign documentation built on June 21, 2022, 1:05 a.m.