R/Caswell.R

# Author: tim
###############################################################################

# an implementation of LTRE
#' Caswell's LTRE method of decomposition
#' @description Caswell's Lifetable Response Experiment (LTRE) decomposed a vector-parameterized 
#' function by taking derivatives of the objective function with respect to each parameter. The 
#' sum-product of the resulting derivative vector and the change in parameter values is a first order
#' approximation of the decomposition. This implementation repeats this operation \code{N} times as 
#' \code{pars1} warps into \code{pars2} over \code{N} steps. This allows for arbitrary precision as 
#' \code{N} increases, as in the case of the Horiuchi approach. 
#' 
#' @details The case of \code{N=1} differentiates with respect to the arithmetic mean of \code{pars1} and \code{pars2}. The \code{...} argument can be used to send extra parameters to \code{func()} that do not get decomposed, or to specify other optional arguments to \code{numDeriv::grad()} for finer control. 
#' 
#' The argument \code{dfunc} is optional. If given, it should be a function written to have a first argument \code{func}, a second argument \code{x}, which consists in the vector of decomposed parameters (same layout at \code{pars1} and \code{pars2}), and an option \code{...} argument for undecomposed parameters. Presumably if a derivative function is given then it is analytic or somehow a more parsimonious calculation than numeric derivatives. If left unspecified \code{numDeriv::grad()} is used.
#' 
#' As with \code{horiuchi()}, the path from \code{pars1} to \code{pars2} is linear, but other paths can be induced by parameterizing \code{func()} differently. For example, if you want proportional change from \code{pars1} to \code{pars2} then log them, and write \code{func()} to first antilog before continuing. This is not zero-friendly, but in practice power transforms give close results, so you could \code{sqrt()} and then square inside \code{func()}. If you do this, then \code{dfunc()} must be written to account for it too, or you could stick with the default numeric gradient function.
#' 
#' @importFrom numDeriv grad
#' @importFrom stats approx
#' @seealso \code{\link[numDeriv]{grad}}
#' @inheritParams horiuchi
#' @param ... \dots optional parameters to pass on to \code{func()}. These are not decomposed. Also one can use this argument to pass optional arguments to \code{numDeriv::grad()}.
#' @param dfunc a derivative function, see details
#' @export
#' @references 
#' \insertRef{caswell1989analysis}{DemoDecomp}
#' \insertRef{caswell2006matrix}{DemoDecomp}
#' 
ltre <- function (func, pars1, pars2, dfunc, N = 20, ...) {
  if (missing(dfunc)) {
    dfunc <- numDeriv::grad
  }
  stopifnot(is.function(dfunc))
  stopifnot(length(pars1) == length(pars2))
  delta  <- pars2 - pars1
  n      <- length(pars1)
  ddelta <- delta/N
  P <- cbind(pars1,pars2)
  if (N == 1){
    # midpoint in this case
    x <- matrix(rowMeans(P))
  }
  if (N == 2){
    # midpoint in this case
    x <- P
  }
  if (N > 2){
    x <- apply(P,1, function(y,N){
      xout <- seq(0,1,length=N)
      c(approx(x=c(0,1),y=y,xout=xout)$y)
    },N=N) |> t()
  }
  cc     <- matrix(0, nrow = n, ncol = N)
  for (i in 1:N) {
    cc[, i] <- dfunc(func, x[, i], ...) * delta
  }
  out <- rowMeans(cc)
  names(out) <- names(pars1)
  out
}

Try the DemoDecomp package in your browser

Any scripts or data that you put into this service are public.

DemoDecomp documentation built on Sept. 20, 2024, 5:09 p.m.