Nothing
#' Plot the survival function
#'
#' @aliases plot_dc
#' @export
#' @description This graph helps to visualize the survival function.
#' @param object an object of the class "dcensoring".
#' @param scenario which defines the scenario in the graph (t: failure times, c: dependent censoring times, or both).
#' @details In order to smooth the line presented in the graph, we used the 'lowess' function. So, it can result in a non-monotonous survival function.
#' @return a survival function graph of the fitted model.
#'
#' @examples
#' \donttest{
#' fit <- dependent.censoring(formula = time ~ x1 | x3, data=KidneyMimic, delta_t=KidneyMimic$delta_t,
#' delta_c=KidneyMimic$delta_c, ident=KidneyMimic$ident, dist = "mep")
#' plot_dc(fit, scenario = "both")
#'}
#'
plot_dc <- function(object, scenario = c("t", "c", "both")){
scenario <- match.arg(scenario )
bmax <- object$bmax
#Caso MEP
if (is.null(bmax) == FALSE){
switch(scenario ,
"t" = invisible(plot.mep.t(object)),
"c" = invisible(plot.mep.c(object)),
"both"= invisible(plot.mep.t(object) + plot.mep.c(object)))
}
#Caso Weibull
else{
switch(scenario ,
"t" = invisible(plot.weibull.t(object)),
"c" = invisible(plot.weibull.c(object)),
"both"= invisible(plot.weibull.t(object) + plot.weibull.c(object)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.