runif.faure | R Documentation |
Generate a Faure sequence with n
experiments in [0,1]^d
.
runif.faure(n, dimension)
n |
the number of experiments |
dimension |
the number of variables (<100) |
A quasirandom or low discrepancy sequence, such as the Faure, Halton, Hammersley, Niederreiter or Sobol sequences, is "less random" than a pseudorandom number sequence, but more useful for such tasks as approximation of integrals in higher dimensions, and in global optimization. This is because low discrepancy sequences tend to sample space "more uniformly" than random numbers.
see randtoolbox or fOptions packages for other low discrepancy sequences.
runif.halton
returns a list containing all the
input arguments detailed before, plus the following component:
design |
the design of experiments |
J. Franco
Faure H. (1982), Discrepance de suites associees a un systeme de numeration (en dimension s), Acta Arith., 41, 337-351
f <- runif.faure(20,2)
plot(f$design, xlim=c(0,1), ylim=c(0,1))
xDRDN(f, letter="T", dgts=2, range=c(-10, 10))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.