Description Usage Arguments Value Author(s) References Examples
Calculate the difference of two precision matrices estimation, given the sample covariance matrices of two sample classes.
1 | L1_dts(SigmaX, SigmaY, rho, lambda)
|
SigmaX |
A pXp matrix. |
SigmaY |
A pXp matrix. |
rho |
The parameter used in augmented Lagrange method. |
lambda |
The tuning parameter of lasso penalty. |
A symmetric pXp matrix.
Huili Yuan
Huili Yuan, Ruibin Xi and Minghua Deng(2015). Differential Network Analysis via the Lasso Penalized D-Trace Loss. http://arxiv.org/abs/1511.09188
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ##generate samples
library(MASS)
set.seed(1);
Sigma1 = genp(50,0.2,0.5)
set.seed(1);
Sigma2 = Sigma1+genp1(50,100,0.5)
tdelta = Sigma2-Sigma1
SigmaX<-solve(Sigma1)
SigmaY<-solve(Sigma2)
n<-200
p<-50
X1<-mvrnorm(n,rep(0,p),SigmaX)
Y1<-mvrnorm(n,rep(0,p),SigmaY)
##use of L1_dts
dtsmatrix<-L1_dts(SigmaX, SigmaY,1,0.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.