Description Usage Arguments Value Author(s) References Examples
Calculate the result of difference of two precision matrices estimation by d-trace loss with lasso penalty, given two sample classes.
1 2 3 |
X1 |
A nXp matrix. |
X0 |
A nXp matrix. |
lambda |
The tuning parameter of lasso penalty. |
nlambda |
The number of tuning parameter of lasso penalty for selection. |
lambda.min.ratio |
|
rho |
The parameter in augmented Lagrange method. The rho here equals the 2*rho in the reference paper. |
shrink |
|
prec |
|
correlation |
|
tuning |
The method used in the lambda selection. |
Dpmdtl |
The result of estimation by d-trace loss with lasso penalty. |
lambda |
The lambda used in the lasso penalty |
nlambda |
The number of lambda used in the lasso penalty |
opt |
Number of best lambda chosen by different matrix norms. |
Huili Yuan
Huili Yuan, Ruibin Xi and Minghua Deng(2015). Differential Network Analysis via the Lasso Penalized D-Trace Loss. http://arxiv.org/abs/1511.09188
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ##generate samples
library(MASS)
set.seed(1);
Sigma1 = genp(50,0.2,0.5)
set.seed(1);
Sigma2 = Sigma1+genp1(50,100,0.5)
tdelta = Sigma2-Sigma1
SigmaX<-solve(Sigma1)
SigmaY<-solve(Sigma2)
n<-200
p<-50
X1<-mvrnorm(n,rep(0,p),SigmaX)
Y1<-mvrnorm(n,rep(0,p),SigmaY)
##use of Dpmdtl
dpmdtl<- Dpmdtl(X1,Y1,nlambda=10,tuning="bic")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.