Dpmdtl: Return the result of difference of two precision matrices...

Description Usage Arguments Value Author(s) References Examples

Description

Calculate the result of difference of two precision matrices estimation by d-trace loss with lasso penalty, given two sample classes.

Usage

1
2
3
Dpmdtl(X1, X0, lambda = NULL, nlambda = 10, lambda.min.ratio = NULL, 
rho = NULL, shrink = NULL, prec = 0.001, correlation = FALSE, 
tuning = c("none", "aic", "bic", "nbic"))

Arguments

X1

A nXp matrix.

X0

A nXp matrix.

lambda

The tuning parameter of lasso penalty.

nlambda

The number of tuning parameter of lasso penalty for selection.

lambda.min.ratio
rho

The parameter in augmented Lagrange method. The rho here equals the 2*rho in the reference paper.

shrink
prec
correlation
tuning

The method used in the lambda selection.

Value

Dpmdtl

The result of estimation by d-trace loss with lasso penalty.

lambda

The lambda used in the lasso penalty

nlambda

The number of lambda used in the lasso penalty

opt

Number of best lambda chosen by different matrix norms.

Author(s)

Huili Yuan

References

Huili Yuan, Ruibin Xi and Minghua Deng(2015). Differential Network Analysis via the Lasso Penalized D-Trace Loss. http://arxiv.org/abs/1511.09188

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
##generate samples
library(MASS)
set.seed(1);
Sigma1 = genp(50,0.2,0.5)
set.seed(1);
Sigma2 = Sigma1+genp1(50,100,0.5)
tdelta = Sigma2-Sigma1
SigmaX<-solve(Sigma1)
SigmaY<-solve(Sigma2)
n<-200
p<-50
X1<-mvrnorm(n,rep(0,p),SigmaX)
Y1<-mvrnorm(n,rep(0,p),SigmaY)
##use of Dpmdtl
dpmdtl<- Dpmdtl(X1,Y1,nlambda=10,tuning="bic")

Difdtl documentation built on Jan. 15, 2017, 8:21 a.m.