Description Usage Arguments Author(s) Examples
These are available methods for the results of Dirichlet regression models and objects of class DirichletRegModel
.
These methods contain functions for print
and summary
of the data, generate fitted
values and predicting new values using predict
.
Various types of residuals
are implemented and confint
can be used to compute confidence intervals of the parameters.
Furthermore logLik
extracts the log-likelihood of the model and vcov
extracts the covariance matrix of the parameter estimates.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ## S3 method for class 'DirichletRegModel'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'DirichletRegModel'
summary(object, ...)
## S3 method for class 'DirichletRegModel'
fitted(object, mu = TRUE, alpha = FALSE, phi = FALSE, ...)
## S3 method for class 'DirichletRegModel'
predict(object, newdata, mu = TRUE, alpha = FALSE, phi = FALSE, ...)
## S3 method for class 'DirichletRegModel'
residuals(object, type = c("standardized", "composite", "raw"), ...)
## S3 method for class 'DirichletRegModel'
confint(object, parm, level, ..., type=c("all", "beta", "gamma"), exp = FALSE)
## S3 method for class 'DirichletRegConfint'
print(x, digits = 3, ...)
## S3 method for class 'DirichletRegModel'
logLik(object, ...)
## S3 method for class 'DirichletRegModel'
AIC(object, ..., k = 2)
## S3 method for class 'DirichletRegModel'
BIC(object, ...)
## S3 method for class 'DirichletRegModel'
nobs(object, ...)
## S3 method for class 'DirichletRegModel'
vcov(object, ...)
## S3 method for class 'DirichletRegModel'
update(object, formula., ..., evaluate = TRUE)
## S3 method for class 'DirichletRegModel'
drop1(object, scope, test = c("LRT", "none"), k = 2, sort = TRUE, ...)
|
x |
an object of class |
object |
an object of class |
alpha |
logical; returns alpha values |
mu |
logical; returns expected values |
phi |
logical; returns precision values |
type |
for for |
newdata |
a |
k |
number for the weighting of parameters |
parm |
a vector containing names of the parameters to print |
level |
(a vector of) confidence level(s), defaults to |
exp |
logical; returns parameters in exponentiated form |
digits |
the number of digits in the output |
formula. |
the new formula to be updated, see |
evaluate |
if |
scope |
defines the scope of variables to be dropped, see |
test |
defines the type of test for |
sort |
if |
... |
further arguments |
Marco J. Maier
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ALake <- ArcticLake
ALake$AL <- DR_data(ArcticLake[, 1:3])
mod1 <- DirichReg(AL ~ depth + I(depth^2) | depth, data = ALake, model="alternative")
update(mod1, . ~ . | . + I(depth^2), evaluate = FALSE)
mod1
drop1(mod1) ### issues a caveat when used for the first time in an R session
summary(mod1)
head(fitted(mod1))
predict(mod1, newdata = data.frame("depth" = seq(10, 100, 10)))
head(residuals(mod1))
confint(mod1)
confint(mod1, exp = TRUE)
logLik(mod1)
round(vcov(mod1), 5)
|
Loading required package: Formula
Warning in DR_data(ArcticLake[, 1:3]) :
not all rows sum up to 1 => normalization forced
DirichReg(formula = AL ~ depth + I(depth^2) | depth + I(depth^2),
data = ALake, model = "alternative")
Call:
DirichReg(formula = AL ~ depth + I(depth^2) | depth, data = ALake, model =
"alternative")
using the alternative parametrization
Log-likelihood: 107.8 on 8 df (95 BFGS + 2 NR Iterations)
MEAN MODELS:
-----------------------------------------
Coefficients for variable no. 1: sand
- variable omitted (reference category) -
-----------------------------------------
Coefficients for variable no. 2: silt
(Intercept) depth I(depth^2)
-1.2885187 0.0706992 -0.0003247
-----------------------------------------
Coefficients for variable no. 3: clay
(Intercept) depth I(depth^2)
-2.9754613 0.1064013 -0.0005161
-----------------------------------------
PRECISION MODEL:
-----------------------------------------
(Intercept) depth
1.32438 0.04177
-----------------------------------------
CAVEAT: drop1() is still an experimental feature. If you plan to use this
function, please double-check results, e.g., by comparing two models
using anova().
Single term deletions
Model:
AL ~ depth + I(depth^2) | depth
Df Deviance AIC LRT Pr(>Chi)
<none> -215.68 -199.68
Mean: I(depth^2) 2 -202.37 -190.37 13.308 0.001289 **
Mean: depth 2 -185.52 -173.52 30.157 2.829e-07 ***
Prec: depth 1 -182.59 -168.59 33.087 8.814e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Call:
DirichReg(formula = AL ~ depth + I(depth^2) | depth, data = ALake, model =
"alternative")
Standardized Residuals:
Min 1Q Median 3Q Max
sand -1.7598 -0.7459 -0.1833 1.0148 2.7250
silt -1.1459 -0.5379 -0.1581 0.2467 1.5572
clay -1.9269 -0.6106 -0.0617 0.6294 1.9976
MEAN MODELS:
------------------------------------------------------------------
Coefficients for variable no. 1: sand
- variable omitted (reference category) -
------------------------------------------------------------------
Coefficients for variable no. 2: silt
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2885187 0.3835030 -3.360 0.00078 ***
depth 0.0706992 0.0147385 4.797 1.61e-06 ***
I(depth^2) -0.0003247 0.0001210 -2.684 0.00727 **
------------------------------------------------------------------
Coefficients for variable no. 3: clay
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.9754613 0.4973405 -5.983 2.19e-09 ***
depth 0.1064013 0.0180002 5.911 3.40e-09 ***
I(depth^2) -0.0005161 0.0001429 -3.612 0.000303 ***
------------------------------------------------------------------
PRECISION MODEL:
------------------------------------------------------------------
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.324382 0.357461 3.705 0.000211 ***
depth 0.041773 0.006604 6.325 2.53e-10 ***
------------------------------------------------------------------
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-likelihood: 107.8 on 8 df (95 BFGS + 2 NR Iterations)
AIC: -199.7, BIC: -186.4
Number of Observations: 39
Links: Logit (Means) and Log (Precision)
Parametrization: alternative
sand silt clay
[1,] 0.5878381 0.3263858 0.08577610
[2,] 0.5655708 0.3410547 0.09337446
[3,] 0.5467019 0.3532332 0.10006483
[4,] 0.5432735 0.3554206 0.10130588
[5,] 0.4972825 0.3839724 0.11874513
[6,] 0.4871840 0.3900359 0.12278004
[,1] [,2] [,3]
[1,] 0.59466851 0.3218234 0.08350812
[2,] 0.42659217 0.4247056 0.14870228
[3,] 0.28598015 0.4908362 0.22318362
[4,] 0.18696231 0.5184104 0.29462729
[5,] 0.12394802 0.5203210 0.35573099
[6,] 0.08568946 0.5103458 0.40396475
[7,] 0.06288266 0.4979281 0.43918924
[8,] 0.04950947 0.4884452 0.46204530
[9,] 0.04207675 0.4846797 0.47324354
[10,] 0.03871648 0.4879630 0.47332057
sand silt clay
1 0.9919461 -0.73098860 -0.5196036
2 0.8264901 -0.51849202 -0.5632384
3 -0.2172116 0.04425618 0.2898421
4 -0.1081184 0.31301128 -0.3180409
5 1.1641424 -0.70238386 -0.7433259
6 1.0327887 -0.40495044 -0.9711209
95% Confidence Intervals (original form)
- Beta-Parameters:
Variable: sand
variable omitted
Variable: silt
2.5% Est. 97.5%
(Intercept) -2.040 -1.289 -0.537
depth 0.042 0.071 0.100
I(depth^2) -0.001 0.000 0.000
Variable: clay
2.5% Est. 97.5%
(Intercept) -3.950 -2.975 -2.001
depth 0.071 0.106 0.142
I(depth^2) -0.001 -0.001 0.000
- Gamma-Parameters
2.5% Est. 97.5%
(Intercept) 0.624 1.324 2.025
depth 0.029 0.042 0.055
95% Confidence Intervals (exponentiated)
- Beta-Parameters:
Variable: sand
variable omitted
Variable: silt
2.5% exp(Est.) 97.5%
(Intercept) 0.130 0.276 0.585
depth 1.043 1.073 1.105
I(depth^2) 0.999 1.000 1.000
Variable: clay
2.5% exp(Est.) 97.5%
(Intercept) 0.019 0.051 0.135
depth 1.074 1.112 1.152
I(depth^2) 0.999 0.999 1.000
- Gamma-Parameters
2.5% exp(Est.) 97.5%
(Intercept) 1.87 3.76 7.58
depth 1.03 1.04 1.06
'log Lik.' 107.8401 (df=8)
silt:(Intercept) silt:depth silt:I(depth^2) clay:(Intercept)
silt:(Intercept) 0.14707 -0.00528 4e-05 0.11699
silt:depth -0.00528 0.00022 0e+00 -0.00471
silt:I(depth^2) 0.00004 0.00000 0e+00 0.00004
clay:(Intercept) 0.11699 -0.00471 4e-05 0.24735
clay:depth -0.00440 0.00020 0e+00 -0.00853
clay:I(depth^2) 0.00003 0.00000 0e+00 0.00006
(phi):(Intercept) -0.04142 0.00191 -2e-05 -0.09849
(phi):depth 0.00076 -0.00003 0e+00 0.00176
clay:depth clay:I(depth^2) (phi):(Intercept) (phi):depth
silt:(Intercept) -0.00440 3e-05 -0.04142 0.00076
silt:depth 0.00020 0e+00 0.00191 -0.00003
silt:I(depth^2) 0.00000 0e+00 -0.00002 0.00000
clay:(Intercept) -0.00853 6e-05 -0.09849 0.00176
clay:depth 0.00032 0e+00 0.00362 -0.00007
clay:I(depth^2) 0.00000 0e+00 -0.00003 0.00000
(phi):(Intercept) 0.00362 -3e-05 0.12778 -0.00212
(phi):depth -0.00007 0e+00 -0.00212 0.00004
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.