Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE, warning=FALSE--------------------------------------
library(DisaggregateTS)
## -----------------------------------------------------------------------------
# Load the combined data from the package
data(Data)
# Extract Data_Y and Data_X from the combined data
Data_Y <- Data$Data_Y
Data_X <- Data$Data_X
# Select IBM GHG data and dates for Q3 2005 - Q3 2021
Dates <- Data_Y$Dates[c(7:23)]
Y <- Data_Y$IBM[c(7:23)]
Y <- as.matrix(as.numeric(Y))
# HF data available from 12-2004 (observation 21) up to 09-2021 (observation 88)
Dates_Q <- Data_X$Dates[c(21:88)]
X <- Data_X[c(21:88),]
X <- sapply(X, as.numeric)
# Remove columns containing NAs
X <- X[ , colSums(is.na(X))==0]
# Remove highly correlated variables (pairwise correlation >= 0.99)
tmp <- cor(X)
tmp[upper.tri(tmp)] <- 0
diag(tmp) <- 0
X2 <- X[, !apply(tmp, 2, function(x) any(abs(x) >= 0.99, na.rm = TRUE))]
## -----------------------------------------------------------------------------
C_sparse <- disaggregate(
as.matrix(Y),
as.matrix(X2),
aggMat = "sum",
aggRatio = 4,
method = "adaptive-spTD")
# Temporally disaggregated time series
Y_HF <- C_sparse$y_Est
## ----plot-results, fig.width=8, fig.height=5, echo=TRUE-----------------------
par(mar = c(5, 6, 4, 5) + 0.1) # Adjust margins for better spacing
# Plot the temporal disaggregated data
plot(Dates_Q, Y_HF, type = "b", pch = 19, ylab = "GHG emissions", xlab = "Time",
lwd = 2, cex.lab = 1.4, cex.axis = 1.2, main = "Temporal Disaggregation of GHG Emissions")
# Add a legend with adjusted font size and position
legend("bottomleft", inset = 0.05,
legend = "Temporal disaggregated observations",
col = "black", lty = 1, lwd = 2, pch = 19,
cex = 1.2, pt.cex = 1.2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.