Description Usage Arguments Details Value References Examples
Probability mass function, distribution function, quantile function and random generation for the discrete inverse Weibull distribution with parameters q and β
1 2 3 4 | ddiweibull(x, q, beta)
pdiweibull(x, q, beta)
qdiweibull(p, q, beta)
rdiweibull(n, q, beta)
|
x |
a vector of quantiles |
p |
a vector of probabilities |
q |
the value of the first parameter, q |
beta |
the value of the second parameter, β |
n |
the sample size |
The discrete inverse Weibull distribution has probability mass function given by P(X=x;q,β)=q^{(x)^{-β}}-q^{(x-1)^{β}}, x=1,2,3,…, 0<q<1, β>0. Its cumulative distribution function is F(x; q, β)=q^{x^{-β}}
ddiweibull
gives the probability, pdiweibull
gives the distribution function, qdiweibull
gives the quantile function, and rdiweibull
generates random values. See the reference below for the continuous inverse Weibull distribution.
Dutang, C., Goulet, V., Pigeon, M. (2008) actuar: An R package for actuarial science, Journal of Statistical Software 25(7): 1-37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
Loading required package: Rsolnp
[1] 0.600000000 0.145729551 0.063140427 0.036053164 0.023600691 0.016775663
[7] 0.012602209 0.009850939 0.007934724 0.006542840
[1] 136
[1] 0.9900169
[1] 0.36 0.35 0.18 0.07 0.03 0.00 0.01
[1] 0.400000000 0.354257427 0.113749456 0.048851444 0.025471713 0.015036590
[7] 0.009664266
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.