# Edweibull3: Expected values In DiscreteWeibull: Discrete Weibull Distributions (Type 1 and 3)

## Description

First and second order moments for the type 3 discrete Weibull distribution

## Usage

 ```1 2``` ```Edweibull3(c, beta, eps = 1e-04) E2dweibull3(c, beta, eps = 1e-04) ```

## Arguments

 `c` first parameter `beta` second parameter `eps` error threshold for the numerical computation of the expected value

## Details

The expected values are numerically computed considering a truncated support: integer values smaller than or equal to 2F^{-1}(1-eps;c,β)), where F^{-1} is the inverse of the cumulative distribution function (implemented by the function `qdweibull3`)

## Value

the (approximate) expected values of the discrete Weibull distribution: `Edweibull3` gives the first order moment, `E2dweibull3` the second order moment

## Author(s)

Alessandro Barbiero

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23``` ```c <- 0.4 beta <- 0.25 Edweibull3(c,beta) c <- 0.4 beta <- -0.75 Edweibull3(c, beta) # may require too much time Edweibull3(c, beta, eps=0.001) # try with a smaller eps->worse approximation c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.5, 11) beta <- (-5:5)/10 Edweibull3(c,beta) # E2dweibull3 c <- 0.4 beta <- 0.25 E2dweibull3(c, beta) c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.8, 11) beta <- (-5:5)/11 E2dweibull3(c, beta) ```

DiscreteWeibull documentation built on May 29, 2017, 11:19 p.m.