make_iivm_data | R Documentation |
Generates data from a interactive IV regression (IIVM) model. The data generating process is defined as
d_i = 1\left\lbrace \alpha_x Z + v_i > 0 \right\rbrace,
y_i = \theta d_i + x_i' \beta + u_i,
Z \sim \textstyle{Bernoulli} (0.5)
and
\left(\begin{array}{c} u_i \\ v_i \end{array} \right) \sim
\mathcal{N}\left(0, \left(\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1
\end{array} \right) \right).
The covariates :x_i \sim \mathcal{N}(0, \Sigma)
, where \Sigma
is a matrix with entries
\Sigma_{kj} = 0.5^{|j-k|}
and \beta
is a dim_x
-vector with
entries \beta_j=\frac{1}{j^2}
.
The data generating process is inspired by a process used in the simulation experiment of Farbmacher, Gruber and Klaaßen (2020).
make_iivm_data(
n_obs = 500,
dim_x = 20,
theta = 1,
alpha_x = 0.2,
return_type = "DoubleMLData"
)
n_obs |
( |
dim_x |
( |
theta |
( |
alpha_x |
( |
return_type |
( |
Farbmacher, H., Guber, R. and Klaaßen, S. (2020). Instrument Validity Tests with Causal Forests. MEA Discussion Paper No. 13-2020. Available at SSRN:\Sexpr[results=rd]{tools:::Rd_expr_doi("10.2139/ssrn.3619201")}.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.