Nothing
# Copyright 2024 DARWIN EU (C)
#
# This file is part of DrugUtilisation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Generate a set of drug cohorts based on given concepts
#'
#' @description
#' Adds a new cohort table to the cdm reference with individuals who have drug
#' exposure records with the specified concepts. Cohort start and end dates will
#' be based on drug record start and end dates, respectively. Records that
#' overlap or have fewer days between them than the specified gap era will be
#' concatenated into a single cohort entry.
#'
#' @inheritParams cdmDoc
#' @inheritParams newNameDoc
#' @inheritParams conceptSetDoc
#' @inheritParams gapEraDoc
#' @param subsetCohort Cohort table to subset.
#' @param subsetCohortId Cohort id to subset.
#' @inheritParams numberExposuresDoc
#' @inheritParams daysPrescribedDoc
#'
#' @return The function returns the cdm reference provided with the addition of
#' the new cohort table.
#'
#' @export
#'
#' @examples
#' \donttest{
#' library(DrugUtilisation)
#' library(CodelistGenerator)
#' library(dplyr, warn.conflicts = FALSE)
#'
#' cdm <- mockDrugUtilisation()
#'
#' druglist <- getDrugIngredientCodes(cdm = cdm,
#' name = c("acetaminophen", "metformin"),
#' nameStyle = "{concept_name}")
#'
#' cdm <- generateDrugUtilisationCohortSet(cdm = cdm,
#' name = "drug_cohorts",
#' conceptSet = druglist,
#' gapEra = 30,
#' numberExposures = TRUE,
#' daysPrescribed = TRUE)
#'
#' cdm$drug_cohorts |>
#' glimpse()
#' }
#'
generateDrugUtilisationCohortSet <- function(cdm,
name,
conceptSet,
gapEra = 1,
subsetCohort = NULL,
subsetCohortId = NULL,
numberExposures = FALSE,
daysPrescribed = FALSE) {
# initial checks
cdm <- omopgenerics::validateCdmArgument(cdm)
name <- omopgenerics::validateNameArgument(name, null = TRUE, call = call, validation = "warning")
conceptSet <- validateConceptSet(conceptSet)
omopgenerics::assertNumeric(gapEra, integerish = TRUE, length = 1)
omopgenerics::assertLogical(numberExposures, length = 1)
omopgenerics::assertLogical(daysPrescribed, length = 1)
omopgenerics::assertCharacter(subsetCohort, length = 1, null = TRUE)
if (!is.null(subsetCohort)) {
validateCohort(cdm[[subsetCohort]])
subsetCohortId <- omopgenerics::validateCohortIdArgument({{subsetCohortId}}, cdm[[subsetCohort]])
}
# get conceptSet
cohortSet <- dplyr::tibble(cohort_name = names(conceptSet)) |>
dplyr::mutate(cohort_definition_id = dplyr::row_number()) |>
dplyr::select("cohort_definition_id", "cohort_name") |>
dplyr::mutate(gap_era = as.character(.env$gapEra))
conceptSet <- conceptSetFromConceptSetList(conceptSet, cohortSet)
cohortCodelistAttr <- cohortSet |>
dplyr::select("cohort_definition_id", "codelist_name" = "cohort_name") |>
dplyr::inner_join(
conceptSet |>
dplyr::rename("concept_id" = "drug_concept_id"),
by = "cohort_definition_id",
relationship = "one-to-many"
) |>
dplyr::mutate("type" = "index event")
cdm[[name]] <- subsetTables(cdm, conceptSet, name, subsetCohort, subsetCohortId) |>
omopgenerics::newCohortTable(
cohortSetRef = cohortSet, cohortCodelistRef = cohortCodelistAttr
)
cols <- c(
"number_exposures"[numberExposures], "days_prescribed"[daysPrescribed]
)
# collapse records
if (gapEra > 0) {
cli::cli_inform(c("i" = "Collapsing records with gapEra = {gapEra} days."))
cdm[[name]] <- cdm[[name]] |>
erafy(gap = gapEra, toSummarise = cols) |>
dplyr::select(!"observation_period_id") |>
dplyr::compute(name = name, temporary = FALSE) |>
omopgenerics::recordCohortAttrition(glue::glue(
"Collapse records separated by {gapEra} or less days"
))
} else {
cdm[[name]] <- cdm[[name]] |>
dplyr::select(
"cohort_definition_id", "subject_id", "cohort_start_date",
"cohort_end_date", dplyr::all_of(cols)
) |>
dplyr::compute(name = name, temporary = FALSE)
}
return(cdm)
}
#' Get the gapEra used to create a cohort
#'
#' @param cohort A `cohort_table` object.
#' @param cohortId Integer vector refering to cohortIds from cohort. If NULL all
#' cohort definition ids in settings will be used.
#'
#' @return gapEra values for the specific cohortIds
#'
#' @export
#'
#' @examples
#' \donttest{
#' library(DrugUtilisation)
#' library(CodelistGenerator)
#'
#' cdm <- mockDrugUtilisation()
#'
#' druglist <- getDrugIngredientCodes(cdm = cdm,
#' name = c("acetaminophen", "metformin"))
#'
#' cdm <- generateDrugUtilisationCohortSet(cdm = cdm,
#' name = "drug_cohorts",
#' conceptSet = druglist,
#' gapEra = 100)
#'
#' cohortGapEra(cdm$drug_cohorts)
#' }
#'
cohortGapEra <- function(cohort, cohortId = NULL) {
omopgenerics::assertClass(cohort, class = "cohort_table")
cohortId <- omopgenerics::validateCohortIdArgument({cohortId}, cohort, validation = "warning")
set <- settings(cohort)
if ("gap_era" %in% colnames(set)) {
gapEra <- set |>
dplyr::select("gap_era", "cohort_definition_id") |>
dplyr::inner_join(
dplyr::tibble(
"cohort_definition_id" = cohortId, "order" = seq_along(cohortId)
),
by = "cohort_definition_id"
) |>
dplyr::arrange(.data$order) |>
dplyr::pull("gap_era") |>
as.integer()
} else {
cli::cli_inform("`gap_era` not present in settings, returning NULL.")
gapEra <- NULL
}
return(gapEra)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.