newQLearn: Perform a Step of the Q-Learning Algorithm

Description Usage Arguments Value

Description

Method performs all necessary regression and predictions steps for a single step of the Q-learning algorithm.

Usage

1
2
3
4
5
6
7
.newQLearn(response, ...)

## S4 method for signature 'vector'
.newQLearn(moMain, moCont, fSet, response, data, txName, iter, suppress)

## S4 method for signature 'QLearn'
.newQLearn(moMain, moCont, fSet, response, data, txName, iter, suppress)

Arguments

response

a vector or the value object returned by a prior call to qlearn()

moMain

modeling object specifying the main effects component of the outcome model

moCont

modeling object specifying the contrasts component of the outcome model

fSet

function defining the feasible tx subsets

data

data.frame of covariates and tx received

txName

character name of tx variable in data

iter

the maximum number of iterations in the iterative algorithm

suppress

logical indicating user's screen printing preference

Value

an object of class QLearn.


DynTxRegime documentation built on Nov. 10, 2020, 1:08 a.m.