Description Usage Arguments Details Value References Examples
hdIS
computes importance weights using samples
drawn by PBsampler
. See the examples
below for details.
1 2 |
PBsample |
bootstrap samples of class |
PETarget, sig2Target, lbdTarget |
parameters of target distribution. (point estimate of beta or E(y), estimated variance of error and lambda) |
TsA.method |
method to construct T(eta(s),A) matrix. See Zhou and Min(2016) for details. |
log |
logical. If |
parallel |
logical. If |
ncores |
integer. The number of cores to use for parallelization. |
computes importance weights which is defined as
\frac{target density}{proposal density}
, when the samples are drawn from the proposal
distribution with the function PBsampler
while the parameters of
the target distribution are (PETarget, sig2Target, lbdTarget).
importance weights of the proposed samples.
Zhou, Q. (2014), "Monte Carlo simulation for Lasso-type problems by estimator augmentation," Journal of the American Statistical Association, 109, 1495-1516.
Zhou, Q. and Min, S. (2017), "Estimator augmentation with applications in high-dimensional group inference," Electronic Journal of Statistics, 11(2), 3039-3080.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | set.seed(1234)
n <- 10
p <- 30
Niter <- 10
Group <- rep(1:(p/10), each = 10)
Weights <- rep(1, p/10)
x <- matrix(rnorm(n*p), n)
# Target distribution parameter
PETarget <- rep(0, p)
sig2Target <- .5
lbdTarget <- .37
#
# Using non-mixture distribution
# ------------------------------
## Proposal distribution parameter
PEProp1 <- rep(1, p)
sig2Prop1 <- .5
lbdProp1 <- 1
PB <- PBsampler(X = x, PE_1 = PEProp1, sig2_1 = sig2Prop1,
lbd_1 = lbdProp1, weights = Weights, group = Group, niter = Niter,
type="grlasso", PEtype = "coeff")
hdIS(PB, PETarget = PETarget, sig2Target = sig2Target, lbdTarget = lbdTarget,
log = TRUE)
#
# Using mixture distribution
# ------------------------------
# Target distribution parameters (coeff, sig2, lbd) = (rep(0,p), .5, .37)
# Proposal distribution parameters
# (coeff, sig2, lbd) = (rep(0,p), .5, .37) & (rep(1,p), 1, .5)
#
#
PEProp1 <- rep(0,p); PEProp2 <- rep(1,p)
sig2Prop1 <- .5; sig2Prop2 <- 1
lbdProp1 <- .37; lbdProp2 <- .5
PBMixture <- PBsampler(X = x, PE_1 = PEProp1,
sig2_1 = sig2Prop1, lbd_1 = lbdProp1, PE_2 = PEProp2,
sig2_2 = sig2Prop2, lbd_2 = lbdProp2, weights = Weights, group = Group,
niter = Niter, type = "grlasso", PEtype = "coeff")
hdIS(PBMixture, PETarget = PETarget, sig2Target = sig2Target, lbdTarget = lbdTarget,
log = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.