EBASS: Sample Size Calculation Method for Cost-Effectiveness Studies Based on Expected Value of Perfect Information

We propose a new sample size calculation method for trial-based cost-effectiveness analyses. Our strategy is based on the value of perfect information that would remain after the completion of the study.

AuthorSebastien Cossin [aut, cre], Clement Bader [ctb], Morgane Donadel [ctb], Aline Maillard [ctb], Antoine Benard [ctb]
Date of publication2016-10-02 13:18:36
MaintainerSebastien Cossin <cossin.sebastien@gmail.com>
LicenseGPL-3
Version0.1
https://github.com/scossin/EBASS

View on CRAN

Functions

check_1 Man page
check_entier Man page
check_heritage Man page
check_positif Man page
create_object_evpi_decrease Man page
create_object_inmb Man page
create_object_inmb_direct Man page
create_object_lambda Man page
create_object_pop Man page
create_object_var_inmb Man page
create_object_var_inmb_diff Man page
create_object_var_inmb_direct Man page
EVPI_DECREASE Man page
gamma_risk Man page
graph_gain_n Man page
INMB Man page
INMB_DIRECT Man page
Lambda Man page
POP Man page
sample_size Man page
VAR_INMB Man page
VAR_INMB_DIFF Man page
VAR_INMB_DIRECT Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.