Description Usage Format Details References Examples

This includes the data for the predictions of insurgencies in 29 countries for 2010.

1 2 3 |

An object of class `matrix`

(inherits from `array`

) with 696 rows and 4 columns.

An object of class `matrix`

(inherits from `array`

) with 348 rows and 4 columns.

The predictions included in the dataset are:

`LMER`

Predictions from a generalized linear mixed effects model using a logistic link function and including a randomeffects term for lagged GDP per capita and the lagged number of conflictual events involving the United States in the country of interest.`SAE`

Predictions from a one model developed as part of the ICEWS project and was designed by Strategic Analysis Enterprises.`GLM`

Predictions from a crude logistic model that includes only population size, GDP growth (both lagged 3 months), the number of minority groups at risk in the country, and a measure of anocracy supplied in the Polity IV data set.

More detail about each model can be found in Mongomery et al. (2012)

Montgomery, Jacob M., Florian M. Hollenbach and Michael D. Ward. (2012). Improving Predictions Using Ensemble Bayesian Model Averaging. *Political Analysis*. **20**: 271-291.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ```
## Not run:
data(calibrationSample)
data(testSample)
this.ForecastData <- makeForecastData(.predCalibration=calibrationSample[,c("LMER", "SAE", "GLM")],
.outcomeCalibration=calibrationSample[,"Insurgency"],.predTest=testSample[,c("LMER", "SAE", "GLM")],
.outcomeTest=testSample[,"Insurgency"], .modelNames=c("LMER", "SAE", "GLM"))
initW <- rep(1/3,3)
this.ensemble.em <- calibrateEnsemble(this.ForecastData, model="logit", tol=0.001)
this.ensemble.gibbs <- calibrateEnsemble(this.ForecastData, model="logit", method = "gibbs")
## End(Not run)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.