Nothing
estimate.shiftvec <- function(predator, prey, num.samples=1000, num.preysamples=1, pred.distinput=FALSE, prey.distinput=TRUE) {
## given two data frames, one containing predator samples and one containing prey samples,
## randomly create shift vectors through the monte-carlo process
## d is the dimension (number of isotopes)
## num.samples is how many shift samples we want to return
## num.preysamples is the number of samples to draw from each of the prey types during each iteration
## if pred.distinput is true, then predator is a 1 x (2*d + 1) data frame
## the first column contains the name of the predator source
## the next 2*d columns contain the mean and standard distribution of each isotope, where column
## 2i contains the mean and column 2i+1 contains the sd of the ith isotope
## if prey.distinput is true, then let s be the number of prey types. prey is a s x (2*d+1) data frame
## the first column contains the names of each of the prey sources
## the next 2*d columns contain the mean and standard distribution of each isotope, organized in the same
## way as the predator data frame
## randomly sample isotopes from predator and prey
cur.samples = 0
allshifts = c()
## the dimension of the data (= the number of isotopes tested)
d = dim(predator)[2]
## assume predator is a m x d data frame
## assume prey is a n x d*s data frame, where
## s is the number of prey types
while(cur.samples < num.samples) {
## we first partition the prey frame into it's
## prey subframes
predator = na.omit(predator)
## sample a point from the predator gaussian distribution
if (pred.distinput) {
## parse the input matrix and get the predator distribution
parsed = parse.isotopeframe(predator)
predmu = parsed$mu
predsigma = array(0, dim=c(d,d))
diag(predsigma) = parsed$sigma
} else {
## compute the predator distribution from the data
predmu = colMeans(predator)
predsigma = var(predator)
m = dim(predator)[1]
}
rpred = mvrnorm(1, mu=predmu, Sigma=predsigma**2)
## R sucks and is stupid. Look at what I have to do.
rpred = data.frame(t(as.matrix(rpred)))
if (prey.distinput) {
s = dim(prey)[1]
} else {
s = dim(prey)[2]/d
}
rprey = array(0, dim=c(s*num.preysamples,d))
## sample a number of points from each prey type by sampling from a gaussian on the type
for (j in 1:s) {
## calculate the mean and sd
if (prey.distinput) {
## parse the input matrix and get the prey distribution
parsed = parse.isotopeframe(prey)
preymu = parsed$mu[j,]
preysigma = array(0, dim=c(d,d))
diag(preysigma) = parsed$sigma[j,]
} else {
## compute the prey distribution from the data
tmp = na.omit(prey[,c(2*j-1, 2*j)])
preymu = colMeans(tmp)
preysigma = var(tmp)
}
rprey[((j-1)*num.preysamples+1):(j*num.preysamples),] = mvrnorm(num.preysamples, mu=preymu, Sigma=preysigma**2)
}
out = shift.mean(rpred, data.frame(rprey))
if (!all(is.na(out))) {
allshifts = rbind(allshifts, out)
cur.samples = cur.samples + 1
}
}
allshifts = allshifts[-1,]
rownames(allshifts) = seq(dim(allshifts)[1])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.