| ergoInfo | R Documentation | 
Computes the Ergodicity Information Index
ergoInfo(
  dynEGA.object,
  use = c("edge.list", "unweighted", "weighted"),
  shuffles = 5000
)
| dynEGA.object | A  | 
| use | Character (length = 1).
A string indicating what network element will be used
to compute the algorithm complexity, the list of edges or the weights of the network.
Defaults to  
 | 
| shuffles | Numeric.
Number of shuffles used to compute the Kolmogorov complexity.
Defaults to  | 
Returns a list containing:
| PrimeWeight | The prime-weight encoding of the individual networks | 
| PrimeWeight.pop | The prime-weight encoding of the population network | 
| Kcomp | The Kolmogorov complexity of the prime-weight encoded individual networks | 
| Kcomp.pop | The Kolmogorov complexity of the prime-weight encoded population network | 
| complexity | The complexity metric proposed by Santora and Nicosia (2020) | 
| EII | The Ergodicity Information Index | 
Hudson Golino <hfg9s at virginia.edu> and Alexander Christensen <alexpaulchristensen@gmail.com>
Original Implementation 
Golino, H., Nesselroade, J. R., & Christensen, A. P. (2022).
Toward a psychology of individuals: The ergodicity information index and a bottom-up approach for finding generalizations.
PsyArXiv.
# Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks
## Not run: 
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
  data = sim.dynEGA[,-26], n.embed = 5, tau = 1,
  delta = 1, id = 25, use.derivatives = 1,
  ncores = 2, corr = "pearson"
)
# Compute empirical ergodicity information index
eii <- ergoInfo(dyn.ega1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.