Description Usage Arguments Details Value Examples
View source: R/plot_interactions.R
This function plots the importance ranking of interactions and pairs in the model.
1 2 |
x |
a result from the |
... |
other parameters. |
NOTE: Be careful use of this function with option="pairs"
parameter,
because high gain of pair can be a result of high gain of child variable.
As strong interactions should be considered only these pairs of variables,
where variable on the bottom (child) has higher gain than variable on the top (parent).
a ggplot object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | library("EIX")
library("Matrix")
sm <- sparse.model.matrix(left ~ . - 1, data = HR_data)
library("xgboost")
param <- list(objective = "binary:logistic", max_depth = 2)
xgb_model <- xgboost(sm, params = param, label = HR_data[, left] == 1, nrounds = 25, verbose=0)
inter <- interactions(xgb_model, sm, option = "interactions")
inter
plot(inter)
inter <- interactions(xgb_model, sm, option = "pairs")
inter
plot(inter)
library(lightgbm)
train_data <- lgb.Dataset(sm, label = HR_data[, left] == 1)
params <- list(objective = "binary", max_depth = 2)
lgb_model <- lgb.train(params, train_data, 25)
inter <- interactions(lgb_model, sm, option = "interactions")
inter
plot(inter)
inter <- interactions(lgb_model, sm, option = "pairs")
inter
plot(inter)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.