Description Usage Arguments Value Examples
This function calculates two tables needed to generate lollipop plot, which visualise the model. The first table contains information about all nodes in the trees forming a model. It includes gain value, depth and ID of each nodes. The second table contains similarly information about roots in the trees.
1 |
xgb_model |
a xgboost or lightgbm model. |
data |
a data table with data used to train the model. |
an object of the lollipop class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library("EIX")
library("Matrix")
sm <- sparse.model.matrix(left ~ . - 1, data = HR_data)
library("xgboost")
param <- list(objective = "binary:logistic", max_depth = 2)
xgb_model <- xgboost(sm, params = param, label = HR_data[, left] == 1, nrounds = 25, verbose = 0)
lolli <- lollipop(xgb_model, sm)
plot(lolli, labels = "topAll", log_scale = TRUE)
library(lightgbm)
train_data <- lgb.Dataset(sm, label = HR_data[, left] == 1)
params <- list(objective = "binary", max_depth = 2)
lgb_model <- lgb.train(params, train_data, 25)
lolli <- lollipop(lgb_model, sm)
plot(lolli, labels = "topAll", log_scale = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.