Nothing
Code
mapped_pars(des)
Output
$v
covariate E
-0.513716908811104 speed : v - 0.514 * v_covariate
0.601813121611908 neutral : v + 0.602 * v_covariate + v_Eneutral + 0.602 * v_covariate:Eneutral
-1.54982186331112 accuracy : v - 1.55 * v_covariate + v_Eaccuracy - 1.55 * v_covariate:Eaccuracy
-1.70962282511647 speed : v - 1.71 * v_covariate
0.7701488026301 neutral : v + 0.77 * v_covariate + v_Eneutral + 0.77 * v_covariate:Eneutral
-0.716873043602934 accuracy : v - 0.717 * v_covariate + v_Eaccuracy - 0.717 * v_covariate:Eaccuracy
$B
E
speed : exp(B)
neutral : exp(B + B_Eneutral)
accuracy : exp(B + B_Eaccuracy)
$t0
S
left : exp(t0)
right : exp(t0 + t0_Sright)
Code
mapped_pars(des, p_vector = rnorm(length(sampled_pars(des))))
Output
E S covariate lR v sv B A t0 b
1 speed left -0.29797771 left 1.637 1 3.048 0 0.292 3.048
2 speed left -0.29797771 right 1.637 1 3.048 0 0.292 3.048
3 neutral left 0.34063680 left 0.805 1 1.793 0 0.292 1.793
4 neutral left 0.34063680 right 0.805 1 1.793 0 0.292 1.793
5 accuracy left 0.13373072 left -0.213 1 3.051 0 0.292 3.051
6 accuracy left 0.13373072 right -0.213 1 3.051 0 0.292 3.051
7 speed right 0.86266186 left 0.057 1 3.048 0 0.189 3.048
8 speed right 0.86266186 right 0.057 1 3.048 0 0.189 3.048
9 neutral right 0.05063779 left 0.895 1 1.793 0 0.189 1.793
10 neutral right 0.05063779 right 0.895 1 1.793 0 0.189 1.793
11 accuracy right 1.22458533 left -2.828 1 3.051 0 0.189 3.051
12 accuracy right 1.22458533 right -2.828 1 3.051 0 0.189 3.051
Code
mapped_pars(prior(des, mu_mean = c(v_covariate = 1)))
Output
E S covariate lR v sv B A t0 b
1 speed left -0.09534976 left -0.095 1 1 0 1 1
2 speed left -0.09534976 right -0.095 1 1 0 1 1
3 neutral left -0.54328498 left -0.543 1 1 0 1 1
4 neutral left -0.54328498 right -0.543 1 1 0 1 1
5 accuracy left -2.15286166 left -2.153 1 1 0 1 1
6 accuracy left -2.15286166 right -2.153 1 1 0 1 1
7 speed right -1.12658056 left -1.127 1 1 0 1 1
8 speed right -1.12658056 right -1.127 1 1 0 1 1
9 neutral right 0.67546458 left 0.675 1 1 0 1 1
10 neutral right 0.67546458 right 0.675 1 1 0 1 1
11 accuracy right -0.08025789 left -0.080 1 1 0 1 1
12 accuracy right -0.08025789 right -0.080 1 1 0 1 1
Code
mapped_pars(samples_LNR)
Output
E S lR lM m s t0
1 speed left left TRUE -1.225 0.587 0.197
2 speed left right FALSE -0.711 0.587 0.197
3 neutral left left TRUE -1.225 0.587 0.197
4 neutral left right FALSE -0.711 0.587 0.197
5 accuracy left left TRUE -1.225 0.587 0.197
6 accuracy left right FALSE -0.711 0.587 0.197
7 speed right left FALSE -0.711 0.587 0.197
8 speed right right TRUE -1.225 0.587 0.197
9 neutral right left FALSE -0.711 0.587 0.197
10 neutral right right TRUE -1.225 0.587 0.197
11 accuracy right left FALSE -0.711 0.587 0.197
12 accuracy right right TRUE -1.225 0.587 0.197
Code
mapped_pars(get_prior(samples_LNR))
Output
E S lR lM m s t0
1 speed left left TRUE 0 1 1
2 speed left right FALSE 0 1 1
3 neutral left left TRUE 0 1 1
4 neutral left right FALSE 0 1 1
5 accuracy left left TRUE 0 1 1
6 accuracy left right FALSE 0 1 1
7 speed right left FALSE 0 1 1
8 speed right right TRUE 0 1 1
9 neutral right left FALSE 0 1 1
10 neutral right right TRUE 0 1 1
11 accuracy right left FALSE 0 1 1
12 accuracy right right TRUE 0 1 1
Code
mapped_pars(get_design(samples_LNR))
Output
$m
lM
TRUE : m + 0.5 * m_lMd
FALSE : m - 0.5 * m_lMd
Code
credint(samples_LNR, selection = "mu", map = "E")
Output
$mu
2.5% 50% 97.5%
m_Eaccuracy -1.008 -0.964 -0.919
m_Eneutral -1.008 -0.964 -0.919
m_Espeed -1.008 -0.964 -0.919
s_Eaccuracy 0.554 0.583 0.619
s_Eneutral 0.554 0.583 0.619
s_Espeed 0.554 0.583 0.619
t0_Eaccuracy 0.177 0.193 0.206
t0_Eneutral 0.177 0.193 0.206
t0_Espeed 0.177 0.193 0.206
Code
credint(samples_LNR, selection = "mu", map = list(~ E * S))
Output
$mu
2.5% 50% 97.5%
m_(Intercept) -1.008 -0.964 -0.919
m_Eneutral -1.008 -0.964 -0.919
m_Eaccuracy -1.008 -0.964 -0.919
m_Sright -1.008 -0.964 -0.919
m_Eneutral:Sright -1.008 -0.964 -0.919
m_Eaccuracy:Sright -1.008 -0.964 -0.919
s_(Intercept) 0.554 0.583 0.619
s_Eneutral 0.554 0.583 0.619
s_Eaccuracy 0.554 0.583 0.619
s_Sright 0.554 0.583 0.619
s_Eneutral:Sright 0.554 0.583 0.619
s_Eaccuracy:Sright 0.554 0.583 0.619
t0_(Intercept) 0.177 0.193 0.206
t0_Eneutral 0.177 0.193 0.206
t0_Eaccuracy 0.177 0.193 0.206
t0_Sright 0.177 0.193 0.206
t0_Eneutral:Sright 0.177 0.193 0.206
t0_Eaccuracy:Sright 0.177 0.193 0.206
Code
credint(samples_LNR, selection = "mu", map = TRUE)
Output
$mu
2.5% 50% 97.5%
m_lMFALSE -0.752 -0.700 -0.655
m_lMTRUE -1.271 -1.228 -1.167
s 0.554 0.583 0.619
t0 0.177 0.193 0.206
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.