tests/testthat/_snaps/map.md

mapped_pars

Code
  mapped_pars(des)
Output
  $v 
    covariate           E         
   -0.513716908811104  speed     : v - 0.514 * v_covariate
   0.601813121611908   neutral   : v + 0.602 * v_covariate + v_Eneutral + 0.602 * v_covariate:Eneutral
   -1.54982186331112   accuracy  : v - 1.55 * v_covariate + v_Eaccuracy - 1.55 * v_covariate:Eaccuracy
   -1.70962282511647   speed     : v - 1.71 * v_covariate
   0.7701488026301     neutral   : v + 0.77 * v_covariate + v_Eneutral + 0.77 * v_covariate:Eneutral
   -0.716873043602934  accuracy  : v - 0.717 * v_covariate + v_Eaccuracy - 0.717 * v_covariate:Eaccuracy

  $B 
    E         
   speed     : exp(B)
   neutral   : exp(B + B_Eneutral)
   accuracy  : exp(B + B_Eaccuracy)

  $t0 
    S      
   left   : exp(t0)
   right  : exp(t0 + t0_Sright)
Code
  mapped_pars(des, p_vector = rnorm(length(sampled_pars(des))))
Output
            E     S   covariate    lR      v sv     B A    t0     b
  1     speed  left -0.29797771  left  1.637  1 3.048 0 0.292 3.048
  2     speed  left -0.29797771 right  1.637  1 3.048 0 0.292 3.048
  3   neutral  left  0.34063680  left  0.805  1 1.793 0 0.292 1.793
  4   neutral  left  0.34063680 right  0.805  1 1.793 0 0.292 1.793
  5  accuracy  left  0.13373072  left -0.213  1 3.051 0 0.292 3.051
  6  accuracy  left  0.13373072 right -0.213  1 3.051 0 0.292 3.051
  7     speed right  0.86266186  left  0.057  1 3.048 0 0.189 3.048
  8     speed right  0.86266186 right  0.057  1 3.048 0 0.189 3.048
  9   neutral right  0.05063779  left  0.895  1 1.793 0 0.189 1.793
  10  neutral right  0.05063779 right  0.895  1 1.793 0 0.189 1.793
  11 accuracy right  1.22458533  left -2.828  1 3.051 0 0.189 3.051
  12 accuracy right  1.22458533 right -2.828  1 3.051 0 0.189 3.051
Code
  mapped_pars(prior(des, mu_mean = c(v_covariate = 1)))
Output
            E     S   covariate    lR      v sv B A t0 b
  1     speed  left -0.09534976  left -0.095  1 1 0  1 1
  2     speed  left -0.09534976 right -0.095  1 1 0  1 1
  3   neutral  left -0.54328498  left -0.543  1 1 0  1 1
  4   neutral  left -0.54328498 right -0.543  1 1 0  1 1
  5  accuracy  left -2.15286166  left -2.153  1 1 0  1 1
  6  accuracy  left -2.15286166 right -2.153  1 1 0  1 1
  7     speed right -1.12658056  left -1.127  1 1 0  1 1
  8     speed right -1.12658056 right -1.127  1 1 0  1 1
  9   neutral right  0.67546458  left  0.675  1 1 0  1 1
  10  neutral right  0.67546458 right  0.675  1 1 0  1 1
  11 accuracy right -0.08025789  left -0.080  1 1 0  1 1
  12 accuracy right -0.08025789 right -0.080  1 1 0  1 1
Code
  mapped_pars(samples_LNR)
Output
            E     S    lR    lM      m     s    t0
  1     speed  left  left  TRUE -1.225 0.587 0.197
  2     speed  left right FALSE -0.711 0.587 0.197
  3   neutral  left  left  TRUE -1.225 0.587 0.197
  4   neutral  left right FALSE -0.711 0.587 0.197
  5  accuracy  left  left  TRUE -1.225 0.587 0.197
  6  accuracy  left right FALSE -0.711 0.587 0.197
  7     speed right  left FALSE -0.711 0.587 0.197
  8     speed right right  TRUE -1.225 0.587 0.197
  9   neutral right  left FALSE -0.711 0.587 0.197
  10  neutral right right  TRUE -1.225 0.587 0.197
  11 accuracy right  left FALSE -0.711 0.587 0.197
  12 accuracy right right  TRUE -1.225 0.587 0.197
Code
  mapped_pars(get_prior(samples_LNR))
Output
            E     S    lR    lM m s t0
  1     speed  left  left  TRUE 0 1  1
  2     speed  left right FALSE 0 1  1
  3   neutral  left  left  TRUE 0 1  1
  4   neutral  left right FALSE 0 1  1
  5  accuracy  left  left  TRUE 0 1  1
  6  accuracy  left right FALSE 0 1  1
  7     speed right  left FALSE 0 1  1
  8     speed right right  TRUE 0 1  1
  9   neutral right  left FALSE 0 1  1
  10  neutral right right  TRUE 0 1  1
  11 accuracy right  left FALSE 0 1  1
  12 accuracy right right  TRUE 0 1  1
Code
  mapped_pars(get_design(samples_LNR))
Output
  $m 
    lM     
   TRUE   : m + 0.5 * m_lMd
   FALSE  : m - 0.5 * m_lMd

map

Code
  credint(samples_LNR, selection = "mu", map = "E")
Output
  $mu
                 2.5%    50%  97.5%
  m_Eaccuracy  -1.008 -0.964 -0.919
  m_Eneutral   -1.008 -0.964 -0.919
  m_Espeed     -1.008 -0.964 -0.919
  s_Eaccuracy   0.554  0.583  0.619
  s_Eneutral    0.554  0.583  0.619
  s_Espeed      0.554  0.583  0.619
  t0_Eaccuracy  0.177  0.193  0.206
  t0_Eneutral   0.177  0.193  0.206
  t0_Espeed     0.177  0.193  0.206
Code
  credint(samples_LNR, selection = "mu", map = list(~ E * S))
Output
  $mu
                        2.5%    50%  97.5%
  m_(Intercept)       -1.008 -0.964 -0.919
  m_Eneutral          -1.008 -0.964 -0.919
  m_Eaccuracy         -1.008 -0.964 -0.919
  m_Sright            -1.008 -0.964 -0.919
  m_Eneutral:Sright   -1.008 -0.964 -0.919
  m_Eaccuracy:Sright  -1.008 -0.964 -0.919
  s_(Intercept)        0.554  0.583  0.619
  s_Eneutral           0.554  0.583  0.619
  s_Eaccuracy          0.554  0.583  0.619
  s_Sright             0.554  0.583  0.619
  s_Eneutral:Sright    0.554  0.583  0.619
  s_Eaccuracy:Sright   0.554  0.583  0.619
  t0_(Intercept)       0.177  0.193  0.206
  t0_Eneutral          0.177  0.193  0.206
  t0_Eaccuracy         0.177  0.193  0.206
  t0_Sright            0.177  0.193  0.206
  t0_Eneutral:Sright   0.177  0.193  0.206
  t0_Eaccuracy:Sright  0.177  0.193  0.206
Code
  credint(samples_LNR, selection = "mu", map = TRUE)
Output
  $mu
              2.5%    50%  97.5%
  m_lMFALSE -0.752 -0.700 -0.655
  m_lMTRUE  -1.271 -1.228 -1.167
  s          0.554  0.583  0.619
  t0         0.177  0.193  0.206


Try the EMC2 package in your browser

Any scripts or data that you put into this service are public.

EMC2 documentation built on Dec. 2, 2025, 9:06 a.m.