mapped_pars | R Documentation |
Maps parameters of the cognitive model back to the experimental design. If p_vector
is left unspecified will print a textual description of the mapping.
Otherwise the p_vector can be created using sampled_pars()
.
The returned matrix shows whether/how parameters
differ across the experimental factors.
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...
)
## S3 method for class 'emc.design'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...
)
## S3 method for class 'emc.prior'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...
)
## S3 method for class 'emc'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...
)
x |
an |
p_vector |
Optional. Specify parameter vector to get numeric mappings.
Must be in the form of |
model |
Optional model type (if not already specified in |
digits |
Integer. Will round the output parameter values to this many decimals |
remove_subjects |
Boolean. Whether to include subjects as a factor in the design |
covariates |
Covariates specified in the design can be included here. |
... |
optional arguments |
Matrix with a column for each factor in the design and for each model parameter type (p_type
).
# First define a design:
design_DDMaE <- design(data = forstmann,model=DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
mapped_pars(design_DDMaE)
# Then create a p_vector:
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# This will map the parameters of the p_vector back to the design
mapped_pars(design_DDMaE, p_vector)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.