plot_stat | R Documentation |
Plots panels that contain a set of densities for each level of the specified factor
The densities represent the predicted data across the posterior, the vertical lines represent the real data.
plot_stat(
input,
post_predict = NULL,
prior_predict = NULL,
stat_fun,
stat_name = NULL,
subject = NULL,
factors = NULL,
n_cores = 1,
n_post = 50,
quants = c(0.025, 0.5, 0.975),
functions = NULL,
layout = NA,
to_plot = c("data", "posterior", "prior")[1:2],
use_lim = c("data", "posterior", "prior")[1:2],
legendpos = c("topleft", "top"),
posterior_args = list(),
prior_args = list(),
...
)
input |
Either an |
post_predict |
Optional posterior predictive data (matching columns) or list thereof. |
prior_predict |
Optional prior predictive data (matching columns) or list thereof. |
stat_fun |
A function that can be applied to the data and returns a single value or a vector of values. |
stat_name |
The name of the calculated quantity |
subject |
Subset the data to a single subject (by index or name). |
factors |
Character vector of factor names to aggregate over;
defaults to plotting full data set ungrouped by factors if |
n_cores |
Number of CPU cores to use if generating predictives from an |
n_post |
Number of posterior draws to simulate if needed for predictives. |
quants |
Numeric vector of credible interval bounds (e.g. |
functions |
A function (or list of functions) that create new columns in the datasets or predictives |
layout |
Numeric vector used in |
to_plot |
Character vector: any of |
use_lim |
Character vector controlling which source(s) define |
legendpos |
Character vector controlling the positions of the legends |
posterior_args |
Optional list of graphical parameters for posterior lines/ribbons. |
prior_args |
Optional list of graphical parameters for prior lines/ribbons. |
... |
Other graphical parameters for the real data lines. |
an invisible data frame with the stat applied to the real data, posterior predictives and/or prior predictives
# For example plot the observed and predicted response accuracy
# Can also apply more sophisticated statistics
drt <- function(data) diff(tapply(data$rt,data[,c("E")],mean))
plot_stat(samples_LNR, stat_fun = drt, n_post = 10, stat_name = "RT diff Speed - A/N")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.