plot.emc.prior | R Documentation |
Takes a prior object and plots the selected implied prior
## S3 method for class 'emc.prior'
plot(
x,
selection = "mu",
do_plot = TRUE,
covariates = NULL,
layout = NA,
N = 50000,
...
)
x |
An |
selection |
A Character string. Indicates which parameter type to use (e.g., |
do_plot |
Boolean. If |
covariates |
dataframe/functions as specified by the design |
layout |
A vector indicating which layout to use as in par(mfrow = layout). If NA, will automatically generate an appropriate layout. |
N |
Integer. How many prior samples to draw |
... |
Optional arguments that can be passed to get_pars, histogram, plot.default (see par()), or arguments required for the types of models e.g. n_factors for type = "factor" |
An invisible mcmc.list object with prior samples of the selected type
# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
# Then set up a prior using make_prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,
t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Now we can plot all sorts of (implied) priors
plot(prior_DDMaE, selection = "mu", N = 1e3)
plot(prior_DDMaE, selection = "mu", mapped = FALSE, N=1e3)
# We can also plot the implied prior on the participant level effects.
plot(prior_DDMaE, selection = "alpha", col = "green", N = 1e3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.