Nothing
#' @title Obtaining Bayesian estimators of interest from a GLM model
#' @param formula a formula object for the model to be addressed
#' @param data a data frame object containing variables and observations corresponding to the formula used
#' @param family distribution family foe the responses
#' @param prior either "AIC" or "BIC"
#' @param n sample size
#' @param maxit maximum number of Fisher scoring iterations
#' @param chunksize size of chunks for processing the data frame
#' @return a list of
#' \describe{
#' \item{mlik}{marginal likelihood of the model}
#' \item{waic}{AIC model selection criterion}
#' \item{dic}{BIC model selection criterion}
#' \item{summary.fixed$mean}{a vector of posterior modes of the parameters}
#' \item{n}{sample size}
#' }
#' @seealso biglm::bigglm
#' @example /inst/examples/estimate.bigm_example.R
#' @keywords methods models
#' @export
estimate.bigm <- function(formula, data, family, prior, n, maxit = 2, chunksize = 1000000) # nice behaviour
{
out <- biglm::bigglm(
data = data, family = family, formula = formula, sandwich = FALSE,
maxit = maxit, chunksize = chunksize
)
if (prior == "AIC") {
penalty <- 2
}
if (prior == "BIC") {
penalty <- n
}
return(
list(
mlik = -stats::AIC(out, k = penalty),
waic = stats::AIC(out, k = 2),
dic = stats::AIC(out, k = n),
summary.fixed = list(mean = stats::coef(out))
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.