Nothing
#' Transform a vector into a matrix
#'
#' Transform a vector into a matrix i.e., Sigma=R^T*R
#' @param par A vector representing a variance matrix
#' @return sigma A variance matrix
#' @export
#' @details The variance matrix is decomposed by computing the Choleski factorization of a real symmetric positive-definite square matrix.
#' Then, storing the upper triangular factor of the Choleski decomposition into a vector.
vec2cov <- function(par){
q <- length(par)
p <- (-1+sqrt(1+4*1*2*q))/2
R <- matrix(0, p,p)
diag_elements <- par[1:p]
upper_elements <-par[-(1:p)]
diag(R) <- exp(diag_elements)
if (any(is.infinite(R) | is.nan(R))) stop('Variances infinite or NaN')
R[upper.tri(R)] <- upper_elements
sigma <- t(R) %*% R
if(any(eigen(sigma)$values <= 0)) stop('Conversion failed (negative eigenvalues)')
return(sigma)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.