Functions for classification and group membership probability estimation are given. The issue of noninformative features in the data is addressed by utilizing the ensemble method. A few optimal models are selected in the ensemble from an initially large set of base knearest neighbours (KNN) models, generated on subset of features from the training data. A two stage assessment is applied in selection of optimal models for the ensemble in the training function. The prediction functions for classification and class membership probability estimation returns class outcomes and class membership probability estimates for the test data. The package includes measure of classification error and brier score, for classification and probability estimation tasks respectively.
Package details 


Author  Asma Gul, Aris Perperoglou, Zardad Khan, Osama Mahmoud, Werner Adler, Miftahuddin Miftahuddin, and Berthold Lausen 
Maintainer  Asma Gul <agul@essex.ac.uk> 
License  GPL (>= 2) 
Version  1.0 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.