Description Usage Arguments Value Author(s) References See Also Examples
This function selects a subset of optimal models from a set of m
models, initially generated on bootstrap sample with a random feature subset from the training data, for class membership probability estimation. The values for the hyper parameters, for example subset size of the best models from the total initial m
models, can be specified by the user otherwise the default values are considered.
1 |
xtrain |
A matrix or data frame of size |
ytrain |
A vector of class labels for the training data. Class labels should be factor of
two levels (0,1) represented by variable |
k |
Number of nearest neighbours to be considered, when |
q |
Percent of models to be selected from the initial set |
m |
Number of models to be generated in the first stage, when |
ss |
Feature subset size to be selected from |
trainfinal |
List of the extracted opimal models. |
fsfinal |
List of the features used in each selected models. |
Asma Gul <agul@essex.ac.uk>
Gul, A., Perperoglou, A., Khan, Z., Mahmoud, O.,Miftahuddin, M., Adler, W. and Lausen, B.(2014),Ensemble of Subset of kNN Classifiers, Journal name to appear.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Load the data
data(sonar)
data <- sonar
# Divide the data into testing and training
Class <- data[,names(data)=="Class"]
data$Class<-as.factor(as.numeric(Class)-1)
train <- data[sample(1:nrow(data),0.7*nrow(data)),]
test <- data[-(sample(1:nrow(data),0.7*nrow(data))),]
ytrain<-train[,names(train)=="Class"]
xtrain<-train[,names(train)!="Class"]
xtest<-test[,names(test)!="Class"]
ytest <- test[,names(test)=="Class"]
# Trian esknnProb on training data
model<-esknnProb(xtrain, ytrain,k=NULL)
# Predict on test data
resProb<-Predict.esknnProb(model,xtest,ytest,k=NULL)
## Returning Objects
resProb$PredProb
resProb$BrierScore
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.